Abstract
Skeletal muscle is a highly plastic tissue that undergoes physiological or pathological remodeling in response to various stimuli such as exercise, immobilization, injury, disease, or aging. This remodeling process implies subtle or more profound changes to skeletal muscle structure and composition that involves extracellular matrix (ECM) degradation by matrix metalloproteinases. The balance between matrix metalloproteinases (MMPs) and their physiological inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), regulates tissue homeostasis. Upregulation of MMPs and/or TIMPs correlates with vascular growth and enlargement in endurance-exercised individuals or with inflammation and regeneration of muscle fibers in injured or diseased muscles. They, further, contribute to the development of fibrosis by regulating cytokine/chemokine production and release/activation of growth factors. Those induce phenotypic transformation and favor the production of ECM components. It is, therefore, important to define the exact pattern of MMP/TIMP expression and regulation in normal and diseased muscles in order to identify potential targets for therapeutic approaches or biomarkers for specific disease entities and therapeutic follow-up.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allamand V, Briñas L, Richard P, Stojkovic T, Quijano-Roy S, Bonne G (2011) ColVI myopathies: where do we stand, where do we go? Skelet Muscle 1:1–14
Allamand V, Merlini L, Bushby K, Consortium for Collagen VI RM (2010) 166th ENMC international workshop on collagen type VI-related myopathies, 22-24 May 2009, Naarden, The Netherlands. Neuromuscul Disord 20:346–354
Bonne G, Mercuri E, Muchir A, Urtizberea A, Becane HM, Recan D et al (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin a/C gene. Ann Neurol 48:170–180
Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288
Demir E, Sabatelli P, Allamand V, Ferreiro A, Moghadaszadeh B, Makrelouf M et al (2002) Mutations in COL6A3 cause severe and mild phenotypes of Ullrich congenital muscular dystrophy. Am J Hum Genet 70:1446–1458
Helbling-Leclerc A, Zhang X, Topaloglu H, Cruaud C, Tesson F, Weissenbach J et al (1995) Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet 11:216–218
Muntoni F, Bonne G, Goldfarb LG, Mercuri E, Piercy RJ, Burke M et al (2006) Disease severity in dominant Emery Dreifuss is increased by mutations in both emerin and desmin proteins. Brain 129:1260–1268
Fortelny N, Cox JH, Kappelhoff R, Starr AE, Lange PF, Pavlidis P et al (2014) Network analyses reveal pervasive functional regulation between proteases in the human protease web. PLoS Biol 12:e1001869
Ricard-Blum S, Vallet SD (2016) Proteases decode the extracellular matrix cryptome. Biochimie 122:300–313
McCawley LJ, Matrisian LM (2001) Matrix metalloproteinases: they're not just for matrix anymore! Curr Opin Cell Biol 13:534–540
Bani C, Lagrota-Candido J, Pinheiro DF, Leite PE, Salimena MC, Henriques-Pons A et al (2008) Pattern of metalloprotease activity and myofiber regeneration in skeletal muscles of mdx mice. Muscle Nerve 37:583–592
Barnes BR, Szelenyi ER, Warren GL, Urso ML (2009) Alterations in mRNA and protein levels of metalloproteinases-2, -9, and -14 and tissue inhibitor of metalloproteinase-2 responses to traumatic skeletal muscle injury. Am J Physiol Cell Physiol 297:C1501–C1508
Bellayr I, Mu X, Li Y (2009) Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments. Future Med Chem 1:1095–1111
Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207–214
Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543
Carmeli E, Moas M, Lennon S, Powers SK (2005) High intensity exercise increases expression of matrix metalloproteinases in fast skeletal muscle fibres. Exp Physiol 90:613–619
Carmeli E, Kodesh E, Nemcovsky C (2009) Tetracycline therapy for muscle atrophy due to immobilization. J Musculoskelet Neuronal Interact 9:81–88
Chen Q, Jin M, Yang F, Zhu J, Xiao Q, Zhang L (2013) Matrix metalloproteinases: inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediat Inflamm 2013:928315
Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda S et al (2007) Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). BMC Musculoskelet Disord 8:54
Kherif S, Dehaupas M, Lafuma C, Fardeau M, Alameddine HS (1998) Matrix metalloproteinases MMP-2 and MMP-9 in denervated muscle and injured nerve. Neuropathol Appl Neurobiol 24:309–319
Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M et al (1999) Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 205:158–170
Ohnishi J, Ohnishi E, Shibuya H, Takahashi T (2005) Functions for proteinases in the ovulatory process. Biochim Biophys Acta 1751:95–109
Paiva KBS, Granjeiro JM (2014) Bone tissue remodeling and development: focus on matrix metalloproteinase functions. Arch Biochem Biophys 561:74–87
Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629
Gulati AK, Zalewski AA, Reddi AH (1983) An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration in the adult newt. Dev Biol 96:355–365
Gulati AK, Reddi AH, Zalewski AA (1983) Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration. J Cell Biol 97:957–962
Porter BE, Weis J, Sanes JR (1995) A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14:549–559
Sanes JR, Marshall LM, McMahan UJ (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol 78:176–198
Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233
Couch CB, Strittmatter WJ (1983) Rat myoblast fusion requires metalloendoprotease activity. Cell 32:257–265
Couch CB, Strittmatter WJ (1984) Specific blockers of myoblast fusion inhibit a soluble and not the membrane-associated metalloendoprotease in myoblasts. J Biol Chem 259:5396–5399
Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652–656
Morgan J, Alameddine HS (2012). Stem cell based therapy for muscular dystrophies: cell types and environmental factors influencing their efficacy, muscular dystrophy, Dr. Madhuri Hegde (ed), InTech, doi:10.5772/30831. Available from: http://www.intechopen.com/books/muscular-dystrophy/stem-cell-based-therapy-for-muscular-dystrophies-cell-types-and-environmental-factors-influencing-th
Morgan J, Rouche A, Bausero P, Houssaïni A, Gross J, Fiszman MY et al (2010) MMP-9 overexpression improves myogenic cell migration and engraftment. Muscle Nerve 42:584–595
Pan H, Vojnits K, Liu TT, Meng F, Yang L, Wang Y et al (2015) MMP1 gene expression enhances myoblast migration and engraftment following implanting into mdx/SCID mice. Cell Adhes Migr 9:283–292
Hindi SM, Shin J, Ogura Y, Li H, Kumar A (2013) Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice. PLoS One 8:e72121
Kumar A, Bhatnagar S, Kumar A (2010) Matrix metalloproteinase inhibitor batimastat alleviates pathology and improves skeletal muscle function in dystrophin-deficient mdx mice. Am J Pathol 177:248–260
Li H, Mittal A, Makonchuk DY, Bhatnagar S, Kumar A (2009) Matrix metalloproteinase-9 inhibition ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Hum Mol Genet 18:2584–2598
Shiba N, Miyazaki D, Yoshizawa T, Fukushima K, Shiba Y, Inaba Y et al (2015) Differential roles of MMP-9 in early and late stages of dystrophic muscles in a mouse model of Duchenne muscular dystrophy. Biochim Biophys Acta 1852:2170–2182
Balcerzak D, Querengesser L, Dixon WT, Baracos VE (2001) Coordinated expression of matrix-degrading proteinases and their activators and inhibitors in bovine skeletal muscle. J Anim Sci 79:94–107
Caron NJ, Asselin I, Morel G, Tremblay JP (1999) Increased myogenic potential and fusion of matrilysin-expressing myoblasts transplanted in mice. Cell Transplant 8:465–476
El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287
Guérin CW, Holland PC (1995) Synthesis and secretion of matrix-degrading metalloproteases by human skeletal muscle satellite cells. Dev Dyn 202:91–99
Lewis MP, Tippett HL, Sinanan AC, Morgan MJ, Hunt NP (2000) Gelatinase-B (matrix metalloproteinase-9; MMP-9) secretion is involved in the migratory phase of human and murine muscle cell cultures. J Muscle Res Cell Motil 21:223–233
Lluri G, Jaworski DM (2005) Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 32:492–499
Nishimura T, Nakamura K, Kishioka Y, Kato-Mori Y, Wakamatsu J, Hattori A (2008) Inhibition of matrix metalloproteinases suppresses the migration of skeletal muscle cells. J Muscle Res Cell Motil 29:37–44
Ohtake Y, Tojo H, Seiki M (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119:3822–3832
Torrente Y, El Fahime E, Caron NJ, Del Bo R, Belicchi M, Pisati F et al (2003) Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells. Cell Transplant 12:91–100
Dehne N, Kerkweg U, Flohe SB, Brune B, Fandrey J (2011) Activation of hypoxia-inducible factor 1 in skeletal muscle cells after exposure to damaged muscle cell debris. Shock 35:632–638
Diomedi-Camassei F, Boldrini R, Ravà L, Donfrancesco A, Boglino C, Messina E et al (2004) Different pattern of matrix metalloproteinases expression in alveolar versus embryonal rhabdomyosarcoma. J Ped Surg 39:1673–1679
Roomi MW, Kalinovsky T, Rath M, Niedzwiecki A (2014) In vitro modulation of MMP-2 and MMP-9 in pediatric human sarcoma cell lines by cytokines, inducers and inhibitors. Int J Oncol 44:27–34
Allen DL, Teitelbaum DH, Kurachi K (2003) Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol - Cell Physiol 284:C805–C815
Yeghiazaryan M, Zybura-Broda K, Cabaj A, Wlodarczyk J, Slawinska U, Rylski M et al (2012) Fine-structural distribution of MMP-2 and MMP-9 activities in the rat skeletal muscle upon training: a study by high-resolution in situ zymography. Histochem Cell Biol 138:75–87
Hadler-Olsen E, Solli AI, Hafstad A, Winberg JO, Uhlin-Hansen L (2015) Intracellular MMP-2 activity in skeletal muscle is associated with type II fibers. J Cell Physiol 230:160–169
Chin JR, Werb Z (1997) Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development 124:1519–1530
Wang W, Pan H, Murray K, Jefferson BS, Li Y (2009) Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol 174:541–549
Ito H, Hallauer PL, Hastings KE, Tremblay JP (1998) Prior culture with concanavalin A increases intramuscular migration of transplanted myoblast. Muscle Nerve 21:291–297
Jaworski DM, Soloway P, Caterina J, Falls WA (2006) Tissue inhibitor of metalloproteinase-2(TIMP-2)-deficient mice display motor deficits. J Neurobiol 66:82–94
Lluri G, Langlois GD, Soloway PD, Jaworski DM (2008) Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and beta1 integrin expression in vitro. Exp Cell Res 314:11–24
Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA et al (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99:81–92
Itoh T, Ikeda T, Gomi H, Nakao S, Suzuki T, Itohara S (1997) Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272:22389–22392
Mosig RA, Dowling O, DiFeo A, Ramirez MC, Parker IC, Abe E et al (2007) Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum Mol Genet 16:1113–1123
Martignetti JA, Aqeel AA, Sewairi WA, Boumah CE, Kambouris M, Mayouf SA et al (2001) Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nat Genet 28:261–265
Plaghki L (1985) Regeneration and myogenesis of striated muscle. J Physiol Paris 80:51–110
Oh J, Takahashi R, Adachi E, Kondo S, Kuratomi S, Noma A et al (2004) Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23:5041–5048
Liu H, Chen SE, Jin B, Carson JA, Niu A, Durham W et al (2010) TIMP3: a physiological regulator of adult myogenesis. J Cell Sci 123:2914–2921
Echizenya M, Kondo S, Takahashi R, Oh J, Kawashima S, Kitayama H et al (2005) The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 24:5850–5857
Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F et al (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80
Devine RD, Bicer S, Reiser PJ, Velten M, Wold LE (2015) Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia. Am J Physiol Heart Circ Physiol 309:H685–H691
Zhang Q, Joshi SK, Lovett DH, Zhang B, Bodine S, Kim H et al (2014) Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy. Muscles Ligaments Tendons J 4:362–370
Faulkner JA, Brooks SV, Opiteck JA (1993) Injury to skeletal muscle fibers during contractions: conditions of occurrence and prevention. Phys Ther 73:911–921
Rullman E, Norrbom J, Stromberg A, Wagsater D, Rundqvist H, Haas T et al (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812
Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H et al (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665
Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD et al (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:H1540–H1547
Brown MD, Hudlicka O (2003) Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis 6:1–14
Rullman E, Rundqvist H, Wagsater D, Fischer H, Eriksson P, Sundberg CJ et al (2007) A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102:2346–2351
Alameddine HS (2004) La plasticité du tissu musculaire. In: Didier JP (ed) La plasticité du tissu musculaire. Springer, Paris, France, pp 55–105
Reihmane D, Tretjakovs P, Kaupe J, Sars M, Valante R, Jurka A (2012) Systemic pro-inflammatory molecule response to acute submaximal exercise in moderately and highly trained athletes. Environmental and Experimental Biology 10:107–112
Rooney SI, Tobias JW, Bhatt PR, Kuntz AF, Soslowsky LJ (2015) Genetic response of rat supraspinatus tendon and muscle to exercise. PLoS One 10:e0139880
Klein G, Schmal O, Aicher WK (2015) Matrix metalloproteinases in stem cell mobilization. Matrix Biol 44–46:175–183
Raffeto JD, Khalil RA (2008) Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 75:346–359
van Hinsbergh VWM, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212
Han JK, Kim HL, Jeon KH, Choi YE, Lee HS, Kwon YW et al (2013) Peroxisome proliferator-activated receptor-delta activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks. Eur Heart J 34:1755–1765
Dennis RA, Zhu H, Kortebein PM, Bush HM, Harvey JF, Sullivan DH et al (2009) Muscle expression of genes associated with inflammation, growth, and remodeling is strongly correlated in older adults with resistance training outcomes. Physiol Genomics 38:169–175
Fiotti N, Deiuri E, Altamura N, De Colle P, Moretti ME, Toigo G, et al. (2009) Body composition and muscular strength changes after moderate activity: association with matrix metalloproteinase polymorphisms. Arch Gerontol Geriatr 49(Suppl 1): 83–94
Peviani SM, Russo TL, Durigan JL, Vieira BS, Pinheiro CM, Galassi MS et al (2009) Stretching and electrical stimulation regulate the metalloproteinase-2 in rat denervated skeletal muscle. Neurol Res 32:891–896
Russo TL, Peviani SM, Durigan JL, Salvini TF (2008) Electrical stimulation increases matrix metalloproteinase-2 gene expression but does not change its activity in denervated rat muscle. Muscle Nerve 37:593–600
Reznick AZ, Menashe O, Bar-Shai M, Coleman R, Carmeli E (2003) Expression of matrix metalloproteinases, inhibitor, and acid phosphatase in muscles of immobilized hindlimbs of rats. Muscle Nerve 27:51–59
Berthon P, Duguez S, Favier FB, Amirouche A, Feasson L, Vico L et al (2007) Regulation of ubiquitin-proteasome system, caspase enzyme activities, and extracellular proteinases in rat soleus muscle in response to unloading. Pflugers Arch 454:625–633
Giannelli G, De Marzo A, Marinosci F, Antonaci S (2005) Matrix metalloproteinase imbalance in muscle disuse atrophy. Histol Histopathol 20:99–106
Wittwer M, Flück M, Hoppeler H, Müller S, Desplanches D, Billeter R (2002) Prolonged unloading of rat soleus muscle causes distinct adaptations of the gene profile. FASEB J 16:884–886
Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC (2003) Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 551:33–48
Liu X, Lee DJ, Skittone LK, Natsuhara K, Kim HT (2010) Role of gelatinases in disuse-induced skeletal muscle atrophy. Muscle Nerve 41:174–178
Peviani SM, Gomes AR, Selistre de Araujo HS, Salvini TF (2009) MMP-2 is not altered by stretching in skeletal muscle. Int J Sports Med 30:550–554
Warren GL, Summan M, Gao X, Chapman R, Hulderman T, Simeonova PP (2007) Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 582:825–841
Ferre PJ, Liaubet L, Concordet D, SanCristobal M, Uro-Coste E, Tosser-Klopp G et al (2007) Longitudinal analysis of gene expression in porcine skeletal muscle after post-injection local injury. Pharmacol Res 24:1480–1489
Frisdal E, Teiger E, Lefaucheur JP, Adnot S, Planus E, Lafuma C et al (2000) Increased expression of gelatinases and alteration of basement membrane in rat soleus muscle following femoral artery ligation. Neuropathol Appl Neurobiol 26:11–21
Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A, Cowled PA (2002) Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, Doxycycline. Eur J Vasc Endovasc Surg 23:260–269
Baum O, Ganster M, Baumgartner I, Nieselt K, Djonov V (2007) Basement membrane remodeling in skeletal muscles of patients with limb ischemia involves regulation of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases. J Vasc Res 44:202–213
Zimowska M, Brzoska E, Swierczynska M, Streminska W, Moraczewski J (2008) Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Int J Dev Biol 52:307–314
Urso ML, Szelenyi ER., Warren GL, Barnes BR (2010) Matrix metalloprotease-3 and tissue inhibitor of metalloprotease-1 mRNA and protein levels are altered in response to traumatic skeletal muscle injury. Eur J App Physiol 109:963–972
Bobadilla M, Sainz N, Rodriguez JA, Abizanda G, Orbe J, de Martino A et al (2014) MMP-10 is required for efficient muscle regeneration in mouse models of injury and muscular dystrophy. Stem Cells 32:447–461
Lei H, Leong D, Smith LR, Barton ER (2013) Matrix-metalloproteinase 13 (MMP-13) is a new contributor to skeletal muscle regeneration and critical for myoblast migration. Am J Physiol Cell Physiol 305:C529–C538
Wu N, Jansen ED, Davidson JM (2003) Comparison of mouse matrix metalloproteinase 13 expression in free-electron laser and scalpel incisions during wound healing. J Invest Dermatol 121:926–932
Bobadilla M, Sainz N, Abizanda G, Orbe J, Rodriguez JA, Paramo JA et al (2014) The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity. Stem Cells Dev 23:1417–1427
Koskinen SO, Hoyhtya M, Turpeenniemi-Hujanen T, Martikkala V, Makinen TT, Oksa J et al (2001) Serum concentrations of collagen degrading enzymes and their inhibitors after downhill running. Scand J Med Sci Sports 11:9–15
Lo IK, Marchuk LL, Hollinshead R, Hart DA, Frank CB (2004) Matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase mRNA levels are specifically altered in torn rotator cuff tendons. Am J Sports Med 32:1223–1229
Thornton GM, Shao X, Chung M, Sciore P, Boorman RS, Hart DA et al (2010) Changes in mechanical loading lead to tendonspecific alterations in MMP and TIMP expression: influence of stress deprivation and intermittent cyclic hydrostatic compression on rat supraspinatus and achilles tendons. Br J Sports Med 44:698–703
Pasternak B, Aspenberg P (2009) Metalloproteinases and their inhibitors-diagnostic and therapeutic opportunities in orthopedics. Acta Orthop 80:693–703
Reider B (2014) Big D. Am J Sports Med 42:25–26
Bedi A, Fox AJS, Kovacevic D, Deng X-h, Warren RF, Rodeo SA (2010) Doxycycline-mediated inhibition of matrix metalloproteinases improves healing after rotator cuff repair. Am J Sports Med 38:308–317
Bedi A, Kovacevic D, Hettrich C, Gulotta LV, Ehteshami JR, Warren RF et al (2010) The effect of matrix metalloproteinase inhibition on tendon-to-bone healing in a rotator cuff repair model. J Shoulder Elb Surg 19:384–391
Dalakas MC (2015) Inflammatory muscle diseases. N Engl J Med 372:1734–1747
Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34–41
Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A (2009) Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets 10:1245–1254
Schoser BG, Blottner D (1999) Matrix metalloproteinases MMP-2, MMP-7 and MMP-9 in denervated human muscle. Neuroreport 10:2795–2797
Kieseier BC, Schneider C, Clements JM, Gearing AJ, Gold R, Toyka KV et al (2001) Expression of specific matrix metalloproteinases in inflammatory myopathies. Brain 124:341–351
Choi YC, Dalakas MC (2000) Expression of matrix metalloproteinases in the muscle of patients with inflammatory myopathies. Neurology 54:65–71
Schoser BGH, Blottner D, Stuerenburg HJ (2002) Matrix metalloproteinases in inflammatory myopathies: enhanced immunoreactivity near atrophic myofibers. Acta Neurol Scand 105:309–313
Emery AE (2002) The muscular dystrophies. Lancet 359:687–695
McAdam LC, Mayo AL, Alman BA, Biggar WD (2012) The Canadian experience with long-term deflazacort treatment in Duchenne muscular dystrophy. Acta Myol 31:16–20
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93
Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–189
Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I et al (2001) Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy. Neurology 57:115–121
Jimenez-Mallebrera C, Torelli S, Brown SC, Feng L, Brockington M, Sewry CA et al (2003) Profound skeletal muscle depletion of alpha-dystroglycan in Walker-Warburg syndrome. Eur J Paediatr Neurol 7:129–137
Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N et al (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861
Johnson EK, Li B, Yoon JH, Flanigan KM, Martin PT, Ervasti J et al (2013) Identification of new dystroglycan complexes in skeletal muscle. PLoS One 8:e73224
Yamada H, Saito F, Fukuta-Ohi H, Zhong D, Hase A, Arai K et al (2001) Processing of beta-dystroglycan by matrix metalloproteinase disrupts the link between the extracellular matrix and cell membrane via the dystroglycan complex. Hum Mol Genet 10:1563–1569
Bozzi M, Sciandra F, Brancaccio A (2015) Role of gelatinases in pathological and physiological processes involving the dystrophin–glycoprotein complex. Matrix Biol 44–46:130–137
Verhaart IE, Aartsma-Rus A (2012) Gene therapy for Duchenne muscular dystrophy. Curr Opin Neurol 25:588–596
Skuk D, Tremblay JP (2011) Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opin Biol Ther 11:359–374
Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C (2011) Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 11:157–176
Morgan JE, Partridge TA (1992) Cell transplantation and gene therapy in muscular dystrophy. BioEssays 14:641–645
Von Moers A, Zwirner A, Reinhold A, Bruckmann O, van Landeghem F, Stoltenburg-Didinger G et al (2005) Increased mRNA expression of tissue inhibitors of metalloproteinase-1 and -2 in Duchenne muscular dystrophy. Acta Neuropathol 109:285–293
Sun G, Haginoya K, Chiba Y, Uematsu M, Hino-Fukuyo N, Tanaka S et al (2010) Elevated plasma levels of tissue inhibitors of metalloproteinase-1 and their overexpression in muscle in human and mouse muscular dystrophy. J Neurol Sci 297:19–28
Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne muscular dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10:758–769
Zanotti S, Gibertini S, Mora M (2010) Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-β1 treatment. Cell Tissue Res 339:397–410
Zanotti S, Saredi S, Ruggieri A, Fabbri M, Blasevich F, Romaggi S et al (2007) Altered extracellular matrix transcript expression and protein modulation in primary Duchenne muscular dystrophy myotubes. Matrix Biol 26:615–624
Bolliger MF, Zurlinden A, Lüscher D, Bütikofer L, Shakhova O, Francolini M et al (2010) Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction. J Cell Sci 123:3944–3955
Choi HY, Liu Y, Tennert C, Sugiura YI, A K, Kröger S, et al. (2013) APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. elife 2013 2:e00220
Ruegg MA, Bixby JL (1998) Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 21:22–27
Bütikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P (2011) Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 25:4378–4393
Drey M, Sieber CC, Bauer JM, Uter W, Dahinden P, Fariello RG et al (2013) C-terminal Agrin fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp Gerontol 48:76–80
Van Saun M, Werle MJ (2000) Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol 43:140–149
VanSaun M, Herrera AA, Werle MJ (2003) Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol 32:1129–1142
Werle MJ, VanSaun M (2003) Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3. J Neurocytol 32:905–913
Chao T, Frump D, Lin M, Caiozzo VJ, Mozaffar T, Steward O et al (2013) Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury. Ann Neurol 73:210–223
Demestre M, Parkin-Smith G, Petzold A, Pullen AH (2005) The pro and the active form of matrix metalloproteinase-9 is increased in serum of patients with amyotrophic lateral sclerosis. J Neuroimmunol 159:146–154
Ozawa J, Kurose T, Kawamata S, Kaneguchi A, Moriyama H, Kito N (2013) Regulation of connective tissue remodeling in the early phase of denervation in a rat skeletal muscle. Biomed Res 34:251–258
Kaplan A, Spiller Krista J, Towne C, Kanning Kevin C, Choe Ginn T, Geber A et al (2014) Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81:333–348
Beuche W, Yushchenko M, Mader M, Maliszewska M, Felgenhauer K, Weber F (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11:3419–3422
Lorenzl S, Albers DS, LeWitt PA, Chirichigno JW, Hilgenberg SL, Cudkowicz ME et al (2003) Tissue inhibitors of matrix metalloproteinases are elevated in cerebrospinal fluid of neurodegenerative diseases. J Neurol Sci 207:71–76
Niebroj-Dobosz I, Janik P, Sokołowska B, Kwiecinski H (2010) Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Eur J Neurol 17:226–231
Lorenzl S, Narr S, Angele B, Krell HW, Gregorio J, Kiaei M et al (2006) The matrix metalloproteinases inhibitor Ro 26-2853 extends survival in transgenic ALS mice. Exp Neurol 200:166–171
Fang L, Teuchert M, Huber-Abel F, Schattauer D, Hendrich C, Dorst J et al (2010) MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J Neurol Sci 294:51–56
Soon CP, Crouch PJ, Turner BJ, McLean CA, Laughton KM, Atkin JD et al (2010) Serum matrix metalloproteinase-9 activity is dysregulated with disease progression in the mutant SOD1 transgenic mice. Neuromuscul Disord 20:260–266
Kriz J, Nguyen MD, Julien JP (2002) Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 10:268–278
Zanoteli E, van de Vlekkert D, Bonten EJ, Hu H, Mann L, Gomero EM et al (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802:659–672
Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A (2012) The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5(Suppl 1):S5
Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195
Serrano AL, Munoz-Canoves P (2010) Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res 316:3050–3058
Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3:337–341
Lluis F, Roma J, Suelves M, Parra M, Aniorte G, Gallardo E et al (2001) Urokinase-dependent plasminogen activation is required for efficient skeletal muscle regeneration in vivo. Blood 97:1703–1711
Nagamine Y, Medcalf RL, Munoz-Canoves P (2005) Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 93:661–675
Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S et al (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Asp Med 33:119–208
Alameddine HS (2012) Matrix metalloproteinases in skeletal muscles: friends or foes? Neurobiol Dis 48:508–518
Goetzl EJ, Banda MJ, Leppert D (1996) Matrix metalloproteinases in immunity. J Immunol 156:1–4
Sopata I, Dancewicz AM (1974) Presence of a gelatin-specific proteinase and its latent form in human leucocytes. Biochim Biophys Acta 370:510–523
Mainardi CL, Hibbs MS, Hasty KA, Seyer JM (1984) Purification of a type V collagen degrading metalloproteinase from rabbit alveolar macrophages. Coll Relat Res 4:479–492
Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S et al (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69:851–859
Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA (2001) Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol 167:4008–4016
Chakrabarti S, Zee JM, Patel KD (2006) Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J Leukoc Biol 79:214–222
Cowland JB, Borregaard N (1999) The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J Leukoc Biol 66:989–995
Kolaczkowska E, Arnold B, Opdenakker G (2008) Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology 213:109–124
Gorospe JR, Tharp MD, Hinckley J, Kornegay JN, Hoffman EP (1994) A role for mast cells in the progression of Duchenne muscular dystrophy? Correlations in dystrophin-deficient humans, dogs, and mice. J Neurol Sci 122:44–56
Hodgetts S, Radley H, Davies M, Grounds MD (2006) Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 16:591–602
Cai B, Spencer MJ, Nakamura G, Tseng-Ong L, Tidball JG (2000) Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors. Am J Pathol 156:1789–1796
Spencer MJ, Montecino-Rodriguez E, Dorshkind K, Tidball JG (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243
Zanotti S, Gibertini S, Di Blasi C, Cappelletti C, Bernasconi P, Mantegazza R et al (2011) Osteopontin is highly expressed in severely dystrophic muscle and seems to play a role in muscle regeneration and fibrosis. Histopathol 59:1215–1228
Nadarajah VD, van Putten M, Chaouch A, Garrood P, Straub V, Lochmuller H et al (2011) Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord 21:569–578
Rodolico C, Mazzeo A, Toscano A, Messina S, Aguennouz M, Gaeta M et al (2005) Specific matrix metalloproteinase expression in focal myositis: an immunopathological study. Acta Neurol Scand 112:173–177
Ogura Y, Tajrishi MM, Sato S, Hindi SM, Kumar A (2014) Therapeutic potential of matrix metalloproteinases in Duchenne muscular dystrophy. Front Cell Dev Biol 2:11
Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497
Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21
Morrison J, Lu QL, Pastoret C, Partridge T, Bou-Gharios G (2000) T-cell-dependent fibrosis in the mdx dystrophic mouse. Lab Investig 80:881–891
Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ et al (1996) Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 271:14657–14660
Schonbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol 161:3340–3346
Atfi A, Dumont E, Colland F, Bonnier D, L’Helgoualc’h A, Prunier C et al (2007) The disintegrin and metalloproteinase ADAM12 contributes to TGF-beta signaling through interaction with the type II receptor. J Cell Biol 178:201–208
Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277:36288–36295
Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176
Li Y, Foster W, Deasy BM, Chan Y, Prisk V, Tang Y et al (2004) Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019
Vial C, Zuniga LM, Cabello-Verrugio C, Canon P, Fadic R, Brandan E (2008) Skeletal muscle cells express the profibrotic cytokine connective tissue growth factor (CTGF/CCN2), which induces their dedifferentiation. J Cell Physiol 215:410–421
Yang M, Huang H, Li J, Huang W, Wang H (2007) Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts. Wound Repair Regen 15:817–824
Bhattacharyya S, Wu M, Fang F, Tourtellotte W, Feghali-Bostwick C, Varga J (2011) Early growth response transcription factors: key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol 30:235–242
Fukaya S, Matsui Y, Tomaru U, Kawakami A, Sogo S, Bohgaki T et al (2013) Overexpression of TNF-alpha-converting enzyme in fibroblasts augments dermal fibrosis after inflammation. Lab Investig 93:72–80
Lurton J, Soto H, Narayanan A, Raghu G (1999) Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha. Exp Lung Res 25:151–164
Piers AT, Lavin T, Radley-Crabb HG, Bakker AJ, Grounds MD, Pinniger GJ (2011) Blockade of TNF in vivo using cV1q antibody reduces contractile dysfunction of skeletal muscle in response to eccentric exercise in dystrophic mdx and normal mice. Neuromuscul Disord 21:132–141
Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18:227–238
Gosselin LE, Martinez DA (2004) Impact of TNF-alpha blockade on TGF-beta1 and type I collagen mRNA expression in dystrophic muscle. Muscle Nerve 30:244–246
Lovelock JD, Baker AH, Gao F, Dong J-F, Bergeron AL, McPheat W et al (2005) Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart C 288:H461–H468
Miyazaki D, Nakamura A, Fukushima K, Yoshida K, Takeda S, Ikeda SI (2011) Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers. Hum Mol Genet 9:1787–1799
Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K et al (2008) Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell B 40:2183–2191
Liu X (2011) Emerging ideas: matrix metalloproteinase-2 in muscle atrophy. Clin Orthop Relat R 469:1797–1799
Hnia K, Hugon G, Rivier F, Masmoudi A, Mercier J, Mornet D (2007) Modulation of p38 mitogen-activated protein kinase cascade and metalloproteinase activity in diaphragm muscle in response to free radical scavenger administration in dystrophin-deficient mdx mice. Am J Pathol 170:633–643
Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S et al (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172:1509–1519
Dahiya S, Bhatnagar S, Hindi SM, Jiang C, Paul PK, Kuang S et al (2011) Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice. Hum Mol Genet 20:4345–4359
Mehan R, Greybeck B, Emmons K, Byrnes W, Allen D (2011) Matrix metalloproteinase-9 deficiency results in decreased fiber cross-sectional area and alters fiber type distribution in mouse hindlimb skeletal muscle. Cells Tissues Organs 194:510–520
Coenen-Stass AM, McClorey G, Manzano R, Betts CA, Blain A, Saleh AF et al (2015) Identification of novel, therapy-responsive protein biomarkers in a mouse model of Duchenne muscular dystrophy by aptamer-based serum proteomics. Sci Rep 5:17014
Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG et al (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 104:264–269
Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D'Angelo G et al (2010) Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 160:1550–1560
Zordan P, Sciorati C, Campana L, Cottone L, Clementi E, Querini PR et al (2013) The nitric oxide-donor molsidomine modulates the innate inflammatory response in a mouse model of muscular dystrophy. Eur J Pharmacol 715:296–303
Bedair H, Liu TT, Kaar JL, Badlani S, Russell AJ, Li Y et al (2007) Matrix metalloproteinase-1 therapy improves muscle healing. J Appl Physiol 102:2338–2345
Acknowledgments
The author wishes to thank K.Mamchaoui and V. Mouly for generously providing primary human myogenic cells and the AFM-Telethon (Association Française contre les Myopathies) for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Alameddine, H.S. (2017). The Matrix Metalloproteinase and Tissue Inhibitors of Metalloproteinase Balance in Physiological and Pathological Remodeling of Skeletal Muscles. In: Chakraborti, S., Dhalla, N. (eds) Proteases in Physiology and Pathology. Springer, Singapore. https://doi.org/10.1007/978-981-10-2513-6_3
Download citation
DOI: https://doi.org/10.1007/978-981-10-2513-6_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-2512-9
Online ISBN: 978-981-10-2513-6
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)