[go: up one dir, main page]

Skip to main content

Genetically Diabetic Animals

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays
  • 623 Accesses

Abstract

Several animal species, mostly rodents, were described to exhibit spontaneously diabetes mellitus on a hereditary basis. These findings were highly appreciated with the expectation to get more insight into the pathogenesis of diabetes in humans. During the last few years since the discovery of leptin (Zhang et al. 1994) and its downstream signal transduction cascade (Friedman and Halaas 1998), tremendous new insight of the genetics of diabetic and obese animal disease models was derived. Up to now, at least six genetically diabetic animal models exhibit defects in the leptin pathway: the ob mutation in the mouse resulted in leptin deficiency. The db mutation in the mouse and the cp and fa mutations in the rat are different mutations of the leptin receptor gene. The fat mutation in the mouse results in a biologically inactive carboxypeptidase E, which processes the prohormone conversion of POMC into α-MSH, which activates the hypothalamic MC4 receptor. Finally the Agouti yellow (y) mouse exhibit a ubiquitous expression of the Agouti protein which represents an antagonist of the hypothalamic MC4 receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References and Further Reading

General Considerations

  • Brunk R (1971) Spontandiabetes bei Tieren. In: Dörzbach E (ed) Handbook of experimental pharmacology vol 32/1. Insulin. Springer, Berlin/Heidelberg/New York, pp 203–272

    Google Scholar 

  • Friedman JF, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Google Scholar 

  • Herberg L, Berger M, Buchanan KD, Gries FA, Kern H (1976) Tiermodelle in der Diabetesforschung: metabolische und hormonelle Besonderheiten. Z Versuchstierk 18:91–105

    CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JF (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Google Scholar 

Spontaneously Diabetic Rats: BB Rat

  • Berg S, Dunger A, Vogt L, Schmidt S (1997) Circadian variations in blood pressure and heart rate in diabetes prone and resistant rat strains compared with spontaneously hypertensive rats. Exp Clin Endocrinol Diabetes 105(Suppl 2):7–9

    CAS  PubMed  Google Scholar 

  • Ellerman K, Wroblewski M, Rabinovitch A, Like A (1993) Natural killer cell depletion and diabetes mellitus in the BB/Wor rat. Diabetologia 36:596–601

    CAS  PubMed  Google Scholar 

  • Gottlieb PA, Berrios JP, Mariani G, Handler ES, Greiner D, Mordes JP, Rossini AA (1990) Autoimmune destruction of islets transplanted into RT6-depleted diabetes-resistant BB/Wor rats. Diabetes 39:643–645

    CAS  PubMed  Google Scholar 

  • Hao L, Chan SM, Lafferty KJ (1993) Mycophenolate mofetil can prevent the development of diabetes in BB rats. Ann N Y Acad Sci 969:328–332

    Google Scholar 

  • Klöting I, Vogt L (1991) BB/O(TTAWA)K(ARLSBURG) rats: features of a subline of diabetes prone BB rats. Diabetes Res 18:79–87

    PubMed  Google Scholar 

  • Kolb H, Burkart V, Appels B, Hanenberg H, Kantwerk-Funke G, Kiesel U, Funda J, Schraermeyer U, Kolb-Bachofen V (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3(Suppl 1):117–120

    PubMed  Google Scholar 

  • Lee KU, Pak CY, Amano K, Yoon JW (1988) Prevention of lymphocytic thyroiditis and insulitis in diabetes-prone BB rats by the depletion of macrophages. Diabetologia 31:400–402

    Google Scholar 

  • Lefkowith J, Schreiner G, Cormier J, Handler ES, Driscoll HK, Greiner D, Mordes JP, Rossini AA (1990) Prevention of diabetes in the BB rat by essential fatty acid deficiency. J Exp Med 171:729–743

    CAS  PubMed  Google Scholar 

  • Like AA, Butler L, Williams RM, Appel MC, Weringer EJ, Rossini AA (1982) Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes 31(Suppl 1):7–11

    CAS  PubMed  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneously diabetic Wistar rat; metabolic and morphologic studies. Diabetes 26:100–112

    CAS  PubMed  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Wei CN, Marliss EB (1978) The spontaneously diabetic Wistar rat (the “BB” rat). Studies prior to and during development of the overt syndrome. Diabetologia 14:199–207

    CAS  PubMed  Google Scholar 

  • Oschilewski U, Kiesel U, Kolb H (1985) Effect of cyclosporin A on low-dose streptozotocin diabetes in mice. Diabetes 34:197–199

    CAS  PubMed  Google Scholar 

  • Papaccio G, Mezzogiorno V (1989) Morphological aspects of glucagon and somatostatin islet cells in diabetic bio breeding and low-dose streptozotocin-treated Wistar rats. Pancreas 4:289–294

    CAS  PubMed  Google Scholar 

  • Pipeleers D, Pipeleers-Marichal M, Markholst H, Hoorens A, Klöppel G (1991) Transplantation of purified islet cells in diabetic BB rats. Diabetologia 34:390–396

    CAS  PubMed  Google Scholar 

  • Sima AAF (1984) Neuropathic and ocular complications in the BB-Wistar rat. In: Shafrir R, Reynold A (eds) Lesson from diabetes. John Libby’s, London, pp 447–453

    Google Scholar 

  • Solomon SS, Deaton J, Harris G, Smoake JA (1989) Studies of insulin resistance in the streptozotocin diabetic and BB rat: activation of low Km cAMP phosphodiesterase by insulin. Am J Med Sci 297:372–376

    CAS  PubMed  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: WBN/Kob Rat

  • Koizumi M, Shimoda I, Sato K, Shishido T, Ono T, Ishizuka J, Toyota T, Goto Y (1989) Effects of CAMOSTAT on development of spontaneous diabetes in the WBN/Kob rats. Biomed Res 10(Suppl 1):45–50

    CAS  Google Scholar 

  • Nakama K, Shichinohe K, Kobayashi K, Naito K, Ushida O, Yasuhara K, Zobe M (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat 122:335–342

    Google Scholar 

  • Shimoda I, Koizumi M, Shimosegawa T, Shishido T, Ono T, Sato K, Ishizuka J, Toyota T (1993) Physiological characterization of spontaneously developed diabetes in male WBN/Kob rat and prevention of development of diabetes by chronic oral administration of synthetic trypsin inhibitor (FOY-305). Pancreas 8:196–203

    CAS  PubMed  Google Scholar 

  • Tsuchitani M, Saegusa T, Narama I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob). Lab Anim 19:200–207

    CAS  PubMed  Google Scholar 

  • Yagihashi S, Wada RI, Kamijo M, Nagai K (1993) Peripheral neuropathy in the WBN/Kob rat with chronic pancreatitis and spontaneous diabetes. Lab Invest 68:296–307

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Rats: Cohen Diabetic Rat

  • Cohen AM, Teitelbaum A, Saliternik R (1972) Genetics and diet as factors in the development of diabetes mellitus. Metabolism 21:235–240

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: Goto–Kakizaki Rat

  • Avignon A, Yamada K, Zhou X (1996) Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto–Kakizaki (GK), obese/aged and obese/Zucker rats. A mechanism for inhibiting glycogen synthesis. Diabetes 45:1396–1404

    CAS  PubMed  Google Scholar 

  • Begum N, Ragiola L (1998) Altered regulation of insulin signaling components in adipocytes of insulin-resistant type II diabetic Goto–Kakizaki rats. Metabolism 47:54–62

    CAS  PubMed  Google Scholar 

  • Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85

    Google Scholar 

  • Portha B, Serradas P, Bailbe D (1991) β cell insensitivity in the GK rat, a spontaneous non-obese model for type II diabetes. Diabetes 40:486–491

    CAS  PubMed  Google Scholar 

  • Villar-Palsi C, Farese RV (1994) Impaired skeletal muscle glycogen synthase activation by insulin in the Goto–Kakizaki (G/K) rat. Diabetologia 37:885–888

    Google Scholar 

Spontaneously Diabetic Rats: Zucker-Fatty Rat

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669

    CAS  PubMed  Google Scholar 

  • Alamzadeh R, Slonim AE, Zdanowicz MM (1993) Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology 133:705–712

    Google Scholar 

  • Bray GA (1977) The Zucker-fatty rat: a review. Fed Proc 36:148–153

    CAS  PubMed  Google Scholar 

  • Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    CAS  PubMed  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) Effect of lovastatin on the secretion of very low density lipoproteins and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104:147–152

    CAS  PubMed  Google Scholar 

  • Kava R, Greenwoof MRC, Johnson PR (1990) New rat models of obesity and type II diabetes-Zucker (fa/fa) rat. Ilar News 32:4–8

    Google Scholar 

  • McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metabolism 41:522–525

    CAS  PubMed  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    Google Scholar 

  • Stern J, Johnson PR, Greenwood RC, Zucker LM, Hirsch J (1972) Insulin resistance and pancreatic insulin release in the genetically obese Zucker rat. Proc Soc Exp Biol Med 139:66–69

    CAS  PubMed  Google Scholar 

  • Stern JS, Johnson PR, Batchelor BR, Zucker LM, Hirsch J (1975) Pancreatic insulin release and peripheral tissue resistance in Zucker obese rats fed high- and low-carbohydrate diets. Am J Physiol 228:543–548

    CAS  PubMed  Google Scholar 

  • Vasselli JR, Flory T, Fried KS (1987) Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats. Int J Obes 11:71–75

    CAS  PubMed  Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    CAS  PubMed  Google Scholar 

  • Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipidemia. Ann N Y Acad Sci 131:447–458

    CAS  PubMed  Google Scholar 

  • Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat “Fatty”. Endocrinology 90:1320–1330

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Rats: Zucker Diabetic Fatty Rat (Zdf/Drt-Fa)

  • Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH (1994) β-cell lipotoxicity in the pathogenesis of noninsulin-dependent diabetes mellitus of obese rats: impairment in adipocytes-β-cell relationships. Proc Natl Acad Sci 91:10878–10882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peterson RG, Shaw WN, Neel M-AN, Little LA, Eicheberg J (1990) Zucker Diabetic Fatty rat as a model for non-insulin dependent diabetes mellitus. ILAR News 32:16–19

    Google Scholar 

Spontaneously Diabetic Rats: Wdf/Ta-Fa Rat

  • Griffen SC, Wang J, German MS (2001) A genetic defect in beta-cell gene expression segregates independently from the fa locus in the ZDF rat. Diabetes 50:63–68

    CAS  PubMed  Google Scholar 

  • Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050

    CAS  PubMed  Google Scholar 

  • Kava RA, West DB, Lukasik VA, Greenwood MRC (1989) Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 38:159–163

    CAS  PubMed  Google Scholar 

  • Kava RA, Peterson RG, West DB, Greenwood MRC (1990) New rat models of obesity and type II diabetes-Wistar diabetic fatty rat. Ilar News 32:9–13

    Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    CAS  PubMed  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal α-glucosidase activity and postprandial hyperglycemia by α-glucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Peterson RG, Little LA, Neel MA (1990) WKY fatty rat as a model of obesity and non-insulin dependent diabetes mellitus. Ilar News 32:13–15

    Google Scholar 

  • Sugiyama Y, Taketomi S, Shimura Y, Ikeda H, Fujita T (1990a) Effects of pioglitazone on glucose and lipid metabolism in Wistar fatty rats. Arzneim Forsch/Drug Res 40:263–267

    CAS  Google Scholar 

  • Sugiyama Y, Shimura Y, Ikeda H (1990b) Effects of pioglitazone on hepatic and peripheral insulin Wistar fatty rats. Arzneim Forsch/Drug Res 40:436–440

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: OLETF Rat

  • Aizawa T, Taguchi N, Sato Y, Nakabayashi T, Kobuchi H, Hidaka H, Nagasawa T, Ishihara F, Itoh N, Hashizume K (1995) Prophylaxis of genetically determined diabetes by diazoxide: a study in a rat model of naturally occurring obese diabetes. J Pharmacol Exp Ther 275:194–199

    CAS  PubMed  Google Scholar 

  • Ishida K, Mizuno A, Sano T, Shima K (1995) Which is the primary etiologic event in Otsuka Long-Evans Tokushima fatty rats, a model of spontaneous non-insulin-dependent diabetes mellitus, insulin resistance, or impaired insulin secretion? Metabolism 44:940–945

    CAS  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S, Kurosumi M, Saitoh Y (1991) A new rat strain with non-insulin dependent diabetes mellitus, “OLETF”. Rat News Lett 25:24–26

    Google Scholar 

  • Kawano K, Hirashima T, Mori S, Saitoh YA, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Rats: ESS-Rat

  • Dumm CLAG, Semino MC, Gagliardino JJ (1990) Sequential changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5:533–539

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Google Scholar 

  • Tarrés MC, Martínez SM, Liborio MM, Rabasa SL (1981) Diabetes mellitus en una línea endocrinada de rata. Mendeliana 5:39–48

    Google Scholar 

Spontaneously Diabetic Rats: Obese SHR Rat

  • Friedman JE, Ishizuka T, Liu S, Farrell CJ, Bedol D, Koletsky RJ, Kaung HL, Ernsberger P (1997) Reduced insulin receptor signaling in the obese spontaneously hypertensive Koletsky rat. Am J Physiol Endocrinol Metab 273:E1014–E1023

    CAS  Google Scholar 

  • Koletsky S (1973) Obese spontaneous hypertensive rats – a model for study of arteriosclerosis. Exp Mol Pathol 19:53–60

    CAS  PubMed  Google Scholar 

  • Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80:129–142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell JC, Graham S, Hameed M (1994) Abnormal insulin and glucose metabolism in the JCR:LA-corpulent rat. Metabolism 43:538–543

    CAS  PubMed  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: SHR/N-cp Rat

  • Adamo M, Shemer J, Aridor M, Dixon J, Carswell N, Bhathena SJ, Michaelis OE IV, LeRoith D (1989) Liver insulin receptor tyrosine kinase activity in a model of type II diabetes mellitus and obesity. J Nutr 119:484–489

    CAS  PubMed  Google Scholar 

  • Hansen CT (1983) Two new congenic rat strains for nutrition and obesity research. Fed Proc 42:573

    Google Scholar 

  • Hansen CT (1988) The development of the SRH/N- and LA/N-cp (corpulent) congenic rat strains. In: Hansen CT, Michaelis OE IV (eds) New models of genetically obese rats for studies in diabetes, heart disease, and complications of obesity. Summaries of workshop papers and current bibliography. National Institutes of Health, Bethesda, pp 7–10

    Google Scholar 

  • McCune SA, Baker PB, Stills HF (1990) SHHF/Mcc-cp rat: a model of obesity, non-insulin-dependent diabetes, and congestive heart failure. Ilar News 32:23–27

    Google Scholar 

  • Michaelis OE, Hansen CT (1990) The spontaneous hypertensive/NIH corpulent rat: a new rodent model for the study of non-insulin dependent diabetes mellitus and its complications. Ilar News 32:19–22

    Google Scholar 

  • Michaelis OE, Patrick DH, Hansen A, Canry JJ, Werner RM, Carswell N (1986) Spontaneous hypertensive/NIH-corpulent rat. An animal model for insulin-independent diabetes mellitus (type II). Am J Pathol 123:398–400

    PubMed Central  PubMed  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: BHE Rat

  • Berdanier CD (1974) Metabolic abnormalities in BHE rats. Diabetologia 10:691–695

    CAS  PubMed  Google Scholar 

  • Durand AMA, Fisher M, Adams M (1964) Histology in rats as influenced by age and diet. Arch Pathol 77:268–277

    CAS  PubMed  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

Spontaneously Diabetic Rats: LEW.1AR1/Ztm-iddm Rat

  • Jörns A, Kubat B, Tiedge M, Wedekind D, Hedrich HJ, Klöppel G, Lenzen S (2004) Pathology of the pancreas and other organs in the diabetic LEW.1AR1/Ztm-iddm rat, a new model of spontaneous insulin-dependent diabetes mellitus. Virchows Arch 444:183–189

    PubMed  Google Scholar 

  • Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jörns A, Koppel G, Wedekínd D, Prokop SM, Hedrich HJ (2001) The LEW.1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44:1189–1196

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: KK Mouse

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Google Scholar 

  • Kondo K, Nozawa K, Tomida T, Ezaki K (1957) Inbred strains resulting from Japanese mice. Bull Exp Anim 6:107–112

    Google Scholar 

  • Nakamura M (1962) A diabetic strain of the mouse. Proc Jpn Acad 38:348–352

    Google Scholar 

  • Nakamura M, Yamada K (1967) Studies on a diabetic (KK) strain of the mouse. Diabetologia 3:212–221

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: KK-Ay Mouse

  • Diani AR, Sawada GA, Zhang NY, Wyse BM, Connell CL, Vidmar TJ, Connell MA (1987) The KKAy mouse: a model for the rapid development of glomerular capillary basement membrane thickening. Blood Vessels 24:297–303

    CAS  PubMed  Google Scholar 

  • Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinology 130:735–740

    CAS  PubMed  Google Scholar 

  • Iwatsuka H, Shino A, Suzouki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Jpn 17:23–35

    CAS  PubMed  Google Scholar 

  • Müller G, Satoh Y, Geisen K (1995) Extrapancreatic effects of sulfonylureas-a comparison between glimepiride and conventional sulfonylureas. Diabetes Res Clin Pract 28:S115–137

    PubMed  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]-2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Takada Y, Takata Y, Iwanishi M, Imamura T, Sawa T, Morioka H, Ishihara H, Ishiki M et al. (1996) Effect of glimepiride (HOE490) on insulin receptors of skeletal muscles from genetically diabetic KK-Ay mouse. Eur J Pharmacol 308:205–210

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: NOD Mouse

  • Baeder WL, Sredy J, Sehgal SN, Chang JY, Adams LM (1992) Rapamycin prevents the onset of insulin dependent diabetes mellitus (IDDM) in NOD mice. Clin Exp Immunol 89:174–178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bergerot I, Ploix C, Petersen J, Moulin V, Rask C, Fabien N, Lindblad M, Mayer A, Czerkinsky C, Holmgren J, Thivolet C (1997) A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci U S A 94:4610–4614

    PubMed Central  CAS  PubMed  Google Scholar 

  • Charlton B, Bacelj A, Mandel TE (1988) Administration of silica particles or anti-Lyt2 antibody prevents β-cell destruction in NOD mice given cyclophosphamide. Diabetes 37:930–935

    CAS  PubMed  Google Scholar 

  • Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR (1990) Induction and therapy of autoimmune diabetes in the nonobese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A 87:1576–1580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Geisen K, Deutschländer H, Gorbach S, Klenke C, Zimmermann U (1990) Function of barium alginate-microencapsulated xenogenic islets in different diabetic mouse models. In: Shafrir E (ed) Frontiers in diabetes research. Lessons from animal diabetes III. John Libby, London, pp 142–148

    Google Scholar 

  • Hutchings PR, Cooke A (1995) Comparative study of the protective affect afforded by intravenous administration of bovine or ovine insulin to young NOD mice. Diabetes 44:906–910

    CAS  PubMed  Google Scholar 

  • Lee KU, Amano K, Yoon JW (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989–991

    Google Scholar 

  • Matsuba H, Jitsukawa T, Yamagata N, Uchida S, Watanabe H (1994) Establishment of rat glutamic acid decarboxylase (GAD)-reactive T-cell clones from NOD mice. Immunol Lett 42:101–103

    CAS  PubMed  Google Scholar 

  • Nicoletti F, Di Marco R, Barcellini W, Magro G, Schorlemmer HU, Kurrle R, Lunetta M, Grasso S, Zaccone P, Meroni PL (1994) Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Eur J Immunol 24:1843–1847

    CAS  PubMed  Google Scholar 

  • Serreze DV, Leiter EH (1994) Genetic and pathogenetic basis of autoimmune diabetes in NOD mice. Curr Opin Immunol 6:900–906

    CAS  PubMed  Google Scholar 

  • Tochino Y (1984) Breeding and characteristics of a spontaneously diabetic non obese strain (NOD mouse) of mice. In: Shafrir E, Renold AE (eds) Lessons from animal diabetes. John Libbey, London, pp 93–98

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Verdaguer J, Schmidt D, Amrani A, Anderson B, Averill N, Santamaria P (1997) Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J Exp Med 186:1663–1676

    PubMed Central  CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: Obese Hyperglycemic Mice

  • Bleisch VR, Mayer J, Dickie MM (1952) Familial diabetes mellitus in mice associated with insulin resistance, obesity and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of obese (ob) gene in the mouse. Diabetologia 9:287–293

    CAS  PubMed  Google Scholar 

  • Dickie MM (1962) New mutations. Mouse News Lett 27:37

    Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    CAS  PubMed  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    CAS  PubMed  Google Scholar 

  • Hellman B (1967) Some metabolic aspects of the obesehyperglycemic syndrome in mice. Diabetologia 3:222–229

    CAS  PubMed  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Google Scholar 

  • Ingalls AM, Dickie MM, Snell GT (1950) Obese, a new mutation in the house mouse. J Hered 14:317–318

    Google Scholar 

  • Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113:746–747

    CAS  PubMed  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. In: Pfeiffer EF (ed) Handbook of diabetes mellitus. Pathophysiology and clinical considerations, vol I. Lehmanns Verlag, München, pp 715–726

    Google Scholar 

  • Stauffacher W, Lambert AE, Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (gold thioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    CAS  PubMed  Google Scholar 

  • Stein JM, Bewsher PD, Stowers JN (1970) The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia 6:570–574

    CAS  PubMed  Google Scholar 

  • Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149

    CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JF (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Google Scholar 

Spontaneously Diabetic Mice: Diabetic db/db Mice

  • Berglund O, Frankel BJ, Hellman B (1980) Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol 87:543–551

    Google Scholar 

  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor. Identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495

    CAS  PubMed  Google Scholar 

  • Coleman DL, Hummel KP (1967) Studies with the mutation diabetes in the mouse. Diabetologia 3:238–248

    CAS  PubMed  Google Scholar 

  • Coleman DL, Hummel KP (1969) Effects of parabiosis of normal with genetically diabetic mice. Am J Physiol 217:1298–1304

    CAS  PubMed  Google Scholar 

  • Friedman JF, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Google Scholar 

  • Gardner K (1978) Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (C57BL/6J db/db and C57BL/KsJ db/db). Diabetologia 15:59–63

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    Google Scholar 

  • Hummel KP, Dickie MM, Colemann DL (1966) Diabetes, a new mutation in the mouse. Science 153:1127–1128

    CAS  PubMed  Google Scholar 

  • Lee SM (1982) The effect of chronic α-glycosidase inhibition on diabetic nephropathy in the db/db mouse. Diabetes 13:249–254

    Google Scholar 

  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Li JI, Friedman JM (1996) Abnormal splicing in the leptin receptor in diabetic mice. Nature 379:632–635

    CAS  PubMed  Google Scholar 

  • Leiter EH, Coleman DL, Ingram DK, Reynold MA (1983) Influence of dietary carbohydrate on the induction of diabetes in C5BL/KsJ-db/db diabetes mice. J Nutr 113:184–195

    CAS  PubMed  Google Scholar 

  • Li C, Ioffe E, Fidahusein N, Connolly E, Friedman JM (1998) Absence of soluble leptin receptor in plasma from dbPas/dbPas and other db/db mice. J Biol Chem 273:10078–10082

    CAS  PubMed  Google Scholar 

  • Like AA, Lavine RL, Poffenbarger PL, Chick WI (1972) Studies on the diabetic mutant mouse. VI Evolution of glomerular lesions and associated proteinuria. Am J Pathol 66:193–224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raizada MK, Tan G, Fellows RE (1980) Fibroblastic cultures from the diabetic db/db mouse. Demonstration of decreased insulin receptors and impaired responses to insulin. J Biol Chem 255:9149–9155

    CAS  PubMed  Google Scholar 

  • Stearns SB, Benz CA (1978) Glucagon and insulin relationships in genetically diabetic (db/db) and streptozotocin-induced diabetic mice. Horm Metab Res 10:20–33

    CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Wenig X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: Diabetes Obesity Syndrome in CBA/Ca Mice

  • Campbell IL, Das AK (1982) A spontaneous diabetic syndrome in the CBA/Ca laboratory mouse. Biochem Soc Trans 10:392

    Google Scholar 

  • Connelly DM, Taberner PV (1985) Insulin independent diabetes in male mice from an inbred CBA strain. Endocrinology 104(Suppl):139

    Google Scholar 

  • Connelly DM, Taberner PV (1989) Characterization of spontaneous diabetes obesity syndrome in mature CBA/Ca mice. Pharmacol Biochem Behav 34:255–259

    CAS  PubMed  Google Scholar 

  • Sclafani A (1984) Animal models in obesity: classification and characterization. Int J Obes 8:491–508

    CAS  PubMed  Google Scholar 

Spontaneously Diabetic Mice: Wellesley Mouse

  • Cahill GF, Jones EE, Lauris V, Steinke J, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. II Serum insulin levels and response of peripheral tissues. Diabetologia 3:171–174

    CAS  PubMed  Google Scholar 

  • Gleason RE, Lauris V, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. III Dietary effects and similar changes in a commercial Swiss-Hauschke strain. Diabetologia 3:175–178

    CAS  PubMed  Google Scholar 

  • Jones E (1964) Spontaneous hyperplasia of the pancreatic islets associated with glycosuria in hybrid mice. In: Brolin SE, Hellman B, Knutson H (eds) The structure and metabolism of pancreatic islets. Pergamon Press, Oxford, pp 189–191

    Google Scholar 

  • Like AA, Jones EE (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. IV. Morphologic changes in islet tissue. Diabetologia 3:179–187

    CAS  PubMed  Google Scholar 

Chinese Hamster

  • Butler L (1967) The inheritance of diabetes in the Chinese hamster. Diabetologia 3:124–129

    CAS  PubMed  Google Scholar 

  • Frenkel BJ, Gerich JE, Hagura R, Fanska RE, Gerritsen GC, Grodsky GM (1974) Abnormal secretion of insulin and glucagon by the in vitro perfused pancreas of the genetically diabetic Chinese hamster. J Clin Invest 53:1637–1646

    Google Scholar 

  • Gerritsen GC (1982) The Chinese hamster as a model for the study of diabetes mellitus. Diabetes 31(Suppl 1):14–23

    CAS  PubMed  Google Scholar 

  • Gerritsen GC, Dulin WE (1967) Characterization of diabetes in the Chinese hamster. Diabetologia 3:74–78

    CAS  PubMed  Google Scholar 

  • Gundersen K, Yerganian G, Lin BJ, Gagnon H, Bell F, McRae W, Onsberg T (1967) Diabetes in the Chinese hamster. Some clinical and metabolic aspects. Diabetologia 3:85–91

    CAS  PubMed  Google Scholar 

  • Luse SA, Caramia F, Gerritsen G, Dulin WE (1967) Spontaneous diabetes mellitus in the Chinese hamster: an electron microscopic study of the islets of Langerhans. Diabetologia 3:97–108

    CAS  PubMed  Google Scholar 

  • Malaisse W, Malaisse-Lagae F, Gerritsen GC, Dulin WE, Wright PH (1967) Insulin secretion in vitro by the pancreas of the Chinese hamster. Diabetologia 3:109–114

    CAS  PubMed  Google Scholar 

  • Meier H, Yerganian GA (1959) Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). I. Pathological findings. Proc Soc Exp Biol Med 100:810–815

    CAS  PubMed  Google Scholar 

  • Meier H, Yerganian G (1961a) Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II Findings in the offspring of diabetic parents. Diabetes 10:12–18

    CAS  PubMed  Google Scholar 

  • Meier H, Yerganian G (1961b) Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10:19–21

    CAS  PubMed  Google Scholar 

  • Shirai T, Welsh GW, Sims EAH (1967) Diabetes mellitus in the Chinese hamster. II The evolution of renal glomerulopathy. Diabetologia 3:266–286

    CAS  PubMed  Google Scholar 

  • Sims EAH, Landau BR (1967) Diabetes mellitus in the Chinese hamster. I Metabolic and morphologic studies. Diabetologia 3:115–123

    CAS  PubMed  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. In: Pfeiffer EF (ed) Handbook of diabetes mellitus. Pathophysiology and clinical considerations, vol I. Lehmanns Verlag, München, pp 715–726

    Google Scholar 

  • Sirek OV, Sirek A (1967) The colony of Chinese hamsters of the C.H. Best institute. A review of experimental work. Diabetologia 3:65–73

    CAS  PubMed  Google Scholar 

  • Soret MG, Dulin WE, Matthew’s J, Gerritsen GC (1974) Morphologic abnormalities observed in retina, pancreas and kidney of diabetic Chinese hamsters. Diabetologia 10:567–579

    CAS  PubMed  Google Scholar 

Other Species with Inherited Diabetic Symptoms: SAND Rat

  • Brodoff BN, Penhos JC, Levine R, White R (1967) The effect of feeding and various hormones on the glucose tolerance of the sand rat (Psammomys obesus). Diabetologia 3:167–170

    CAS  PubMed  Google Scholar 

  • DeFronzo R, Miki E, Steinke J (1967) Diabetic syndrome in sand rats. Diabetologia 3:140–142

    CAS  Google Scholar 

  • Dubault J, Boulanger M, Espinal J, Marquie G, Petkov P, du Boistesselin R (1995) Latent autoimmune diabetes mellitus in adult humans with non-insulin-dependent diabetes: is Psammomys obesus a suitable animal model? Acta Diabetol 32:92–94

    Google Scholar 

  • Hackel BB, Frohman LA, Mikat E, Lebovitz HE, Schmidt-Nielsen K (1965a) Review of current studies on the effect of diet on the glucose tolerance of the sand rat (Psammomys obesus). Ann N Y Acad Sci 131:459–463

    CAS  PubMed  Google Scholar 

  • Hackel DB, Schmidt-Nielson K, Haines HB, Miai E (1965b) Diabetes mellitus in the sand rat (Psammomys obesus) – pathologic studies. Lab Invest 14:200–207

    CAS  PubMed  Google Scholar 

  • Hackel DB, Mikat E, Lebovitz HE, Schmidt-Nielsen K, Horton ES, Kinney TD (1967) The sand rat (Psammomys obesus) as an experimental animal in studies of diabetes mellitus. Diabetologia 3:130–134

    CAS  PubMed  Google Scholar 

  • Haines H, Hackel DB, Schmidt-Nielsen K (1965) Experimental diabetes mellitus induced by diet in the sand rat. Am J Physiol 208:297–300

    CAS  PubMed  Google Scholar 

  • Kalderon B, Gutman A, Levy E, Shafrir E, Adler JH (1986) Characterization of stages in the development of obesity diabetes syndrome in the sand rat (Psammomys obesus). Diabetes 35:717–724

    CAS  PubMed  Google Scholar 

  • Marquie G, Duhault J, Jacotot B (1984) Diabetes mellitus in sand rats (Psammomys obesus). Metabolic pattern during development of the diabetic syndrome. Diabetes 33:438–443

    CAS  PubMed  Google Scholar 

  • Miki E, Like AA, Steinke J, Soeldner JS (1967) Diabetic syndrome in sand rats. Diabetologia 3:135–139

    CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K, Haines HB, Hackel DB (1964) Diabetes mellitus in the sand rat induced by standard laboratory diets. Science 143:689–690

    CAS  PubMed  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    Google Scholar 

  • Strasser H (1968) A breeding program for spontaneously diabetic experimental animals: Psammomys obesus (sand rat) and Acomys cahirinus (spiny mouse). Lab Anim Care 18:328–338

    CAS  PubMed  Google Scholar 

Other Species with Inherited Diabetic Symptoms: Spiny Mouse

  • Brunk R (1971) Spontandiabetes bei einer weiteren Stachelmausform (Acomys c. cahirinus Desmarest, 1819) Z Versuchstierk 13:81–86

    Google Scholar 

  • Gonet AE, Stauffacher W, Pictet R, Renold AE (1965) Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of Langerhans in spiny mice (Acomys cahirinus). I Histological findings and preliminary metabolic observations. Diabetologia 1:162–171

    Google Scholar 

  • Junod A, Letarte J, Lambert AE, Stauffacher W (1969) Studies in spiny mice (Acomys cahirinus): metabolic state and pancreatic insulin release in vitro. Horm Metab Res 1:45–52

    CAS  PubMed  Google Scholar 

  • Pictet R, Orci L, Gonet AE, Rouiller C, Renold AE (1967) Ultrastructural studies of the hyperplastic islets of Langerhans of spiny mice (Acomys cahirinus) before and during the development of hyperglycemia. Diabetologia 3:188–211

    CAS  PubMed  Google Scholar 

  • Renold AE, Dulin WE (1967) Spontaneous diabetes in laboratory animals. Diabetologia 3:63–64

    Google Scholar 

  • Shafrir E, Teitelbaum A, Cohen AM (1972) Hyperlipidemia and impaired glucose tolerance in Acomys cahirinus maintained on synthetic carbohydrate diets. Isr J Med Sci 8:990–992

    CAS  PubMed  Google Scholar 

Other Species with Inherited Diabetic Symptoms: African Hamster (Mystromys albicaudatus)

  • Packer JT, Kraner KL, Rose SD, Stuhlman A, Nelson RL (1970) Diabetes mellitus in Mystromys albicaudatus. Arch Pathol 89:410–415

    CAS  PubMed  Google Scholar 

  • Schmidt G, Martin AP, Stuhlman RA, Townsend JF, Lucas FV, Vorbeck ML (1974) Evaluation of hepatic mitochondrial function in the spontaneously diabetic Mystromys albicaudatus. Lab Invest 30:451–457

    CAS  PubMed  Google Scholar 

  • Stuhlman RA, Packer JT, Doyle RE (1972) Spontaneous diabetes mellitus in Mystromys albicaudatus. Repeated glucose values from 620 animals. Diabetes 21:715–721

    CAS  PubMed  Google Scholar 

  • Stuhlman RA, Srivastava PK, Schmidt G, Vorbeck ML, Townsend JF (1974) Characterization of diabetes mellitus in South African Hamsters (Mystromys albicaudatus). Diabetologia 10:685–690

    PubMed  Google Scholar 

  • Stuhlman RA, Packer JT, Doyle RE, Brown RV, Townsend JF (1975) Relationship between pancreatic lesions and serum glucose values in Mystromys albicaudatus. Lab Anim Sci 25:168–174

    CAS  PubMed  Google Scholar 

Other Species with Inherited Diabetic Symptoms: Tuco-Tuco

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Wise PH, Weir BJ, Hime JM, Forrest E (1972) The diabetic syndrome in the Tuco-Tuco (Ctenomis talarum). Diabetologia 8:165–172

    CAS  PubMed  Google Scholar 

Other Species with Inherited Diabetic Symptoms: Macaca Nigra

  • Howard CF Jr (1972) Spontaneous diabetes in Macaca nigra. Diabetes 21:1077–1090

    PubMed  Google Scholar 

  • Howard CF Jr (1974a) Diabetes in Macaca nigra: metabolic and histologic changes. Diabetologia 10:671–677

    CAS  PubMed  Google Scholar 

  • Howard CF Jr (1974b) Correlations of serum triglyceride and pre-beta lipoprotein levels to the severity of spontaneous diabetes in Macaca nigra. J Clin Endocrinol Metab 38:856–860

    CAS  PubMed  Google Scholar 

  • Howard CF Jr (1975) Basement membrane thickness in muscle capillaries of normal and spontaneously diabetic Macaca nigra. Diabetes 24:201–206

    PubMed  Google Scholar 

Adipose Tissue-Specific Transgenic Mouse Models

  • Agelion LB, Walsh A, Hayek T, Moulin P, Jiang XC, Shelanski SA, Breslow JL, Tall AR (1991) Reduced high density lipoprotein cholesterol in human cholesteryl ester transfer protein transgenic mice. J Biol Chem 266:10796–10800

    Google Scholar 

  • Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity 14(Suppl 5):242S–249S

    CAS  PubMed  Google Scholar 

  • Arai T, Yamashita S, Hirano K, Sakai N, Kotami K, Fujioka S, Nozaki S, Keno Y, Yamane M, Shinohara E (1994) Increased plasma cholesteryl ester transfer protein in obese subjects. A possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arterioscler Thromb 14:1129–1136

    CAS  PubMed  Google Scholar 

  • Barlow C, Schroeder M, Lekstrom-Hines J, Kylefjord H, Deng CX, Wynshaw-Boris A, Spiegelman BM, Xanthopoulos KG (1997) Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments. Nucleic Acids Res 25:2543–2545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bealnger C, Luu-The V, Dupont P, Tchernof A (2002) Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res 34:737–745

    Google Scholar 

  • Chen HC, Farese RV Jr (2002) Determination of adipocyte size by computer image analysis. J Lipid Res 43:986–989

    CAS  PubMed  Google Scholar 

  • Dullaart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A (1994) Effect of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Invest 24:188–194

    CAS  PubMed  Google Scholar 

  • Farley FW, Soriano P, Steffen LS, Dymecki SM (2000) Widespread recombinase expression using FLPeR (flipper) mice. Genesis 28:106–110

    CAS  PubMed  Google Scholar 

  • Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116:337–350

    CAS  PubMed  Google Scholar 

  • Fu Y, Luo N, Lopes-Virella MF, Garvey WT (2002) The adipocyte lipid binding protein (ALBP/ap2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis 165:259–269

    CAS  PubMed  Google Scholar 

  • Horton JD, Shimomura I, Ikemoto S, Bashmakov Y, Hammer RE (2003) Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J Biol Chem 278:36652–36660

    CAS  PubMed  Google Scholar 

  • Jiang XC, Agellon LB, Walsh A, Breslow JP, Tall (1992) Dietary cholesterol increases transcription of the human cholesteryl ester transfer protein gene in transgenic mice. Dependence on natural flanking sequences. J Clin Invest 90:1290–1295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang XC, Moulin P, Quinet E, Goldberg IJ, Yacoub LK, Agellon LB, Compton D, Schnitzer-Polokoff R, Tall AR (1991) Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA. J Biol Chem 247:4631–4639

    Google Scholar 

  • Jones JR, Shelton KD, Magnuson MA (2005) Strategies for the use of site-specific recombinases in genome engineering. Methods Mol Med 103:245–257

    CAS  PubMed  Google Scholar 

  • Jurczak MJ, Danos AM, Rehrmann VR, Allison MB, Greenberg CC, Brady MJ (2007) Transgenic overexpression of protein targeting to glycogen markedly increases adipocyte glycogen storage in mice. Am J Physiol Endocrinol Metab 292:E952–E963

    CAS  PubMed  Google Scholar 

  • Kopecky J, Clarke G, Enerback S, Spiegelman B, Kozak LP (1995) Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest 96:2914–2923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laustsen PG, Michael MD, Crute BE, Cohen SE, Ueki K, Kulkarni RN, Keller SR, Lienhard GE, Kahn CR (2002) Lipoatrophic diabetes in Irs1(−/−)/Irs3(−/−) double knockout mice Genes Dev 16:3213–3222

    Google Scholar 

  • Le Lay S, Ferre P, Dugail I (2004) Adipocyte cholesterol balance in obesity. Biochem Soc Transact 32:103–106

    Google Scholar 

  • Morton NM, Paterson JM, Masuzaki H et al (2004) Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53:931–938

    CAS  PubMed  Google Scholar 

  • Quinet EM, Huerta P, Nancoo D, Tall AR, Marcel YL, McPherson R (1993) Adipose tissue cholesteryl ester transfer protein mRNA in response to probucol treatment: cholesterol and species dependence. J Lipid Res 34:845–852

    CAS  PubMed  Google Scholar 

  • Quinet EM, Tall AR, Ramakrishnan R, Rudel L (1991) Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J Clin Invest 87:1559–1566

    PubMed Central  CAS  PubMed  Google Scholar 

  • Radeau T, Lau P, Robb M, McDonnell M, Ailhaud G, McPherson R (1995) Cholesteryl ester transfer protein (CETP) mRNA abundance in human adipose tissue: relationship to cell size and membrane cholesterol content. J Lipid Res 36:2552–2561

    CAS  PubMed  Google Scholar 

  • Remillard P, Shen G, Milne R, Maheux P (2001) Induction of cholesteryl ester transfer protein in adipose tissue and plasma of the fructore-fed hamster. Life Sci 69:677–687

    CAS  PubMed  Google Scholar 

  • Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14:381–392

    CAS  PubMed  Google Scholar 

  • Shen GX, Angel A (1995) Regulation of cholesteryl ester transfer protein in adipose tissue: comparison between hamster and rat species. Am J Physiol 269:99–107

    Google Scholar 

  • Shepherd PR, Gnudi L, Tozzo E, Yang H, Leach F, Kahn BB (1993) Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. J Biol Chem 268:22243–22246

    CAS  PubMed  Google Scholar 

  • Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. Int J Obes Relat Metab Disord 28:1357–1364

    CAS  PubMed  Google Scholar 

  • Tall AR (1993) Plasma cholesteryl ester transfer protein. J Lipid Res 120:1255–1274

    Google Scholar 

  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu H, Barnes GT, Yang Q et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, Quignard-Boulange A (2005) Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes 54:991–999

    CAS  PubMed  Google Scholar 

  • Zhou H, Li Z, Hojjati MR, Jang D, Beyer TP, Cao G, Tall AR, Jiang XC (2006) Adipose tissue-specific CETP expression in mice: impact on plasma lipoprotein metabolism. J Lipid Res 47:2011–2019

    CAS  PubMed  Google Scholar 

Metabolic Systems Biology

  • Abe H, Yamada N, Kamata K, Kuwaki T, Shimada M, Osuga J, Shionoiri F, Yahagi N, Kadowaki T, Tamemoto H, Ishibashi S, Yazaki Y, Makuuchi M (1998) Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 101:1784–1788

    PubMed Central  CAS  PubMed  Google Scholar 

  • Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Jose PA, Taylor SI, Westphal H (1996) Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12:106–109

    CAS  PubMed  Google Scholar 

  • Aichele P, Hyburtz D, Ohashi POS, Odermatt B, Zinkernagel RM, Hengartner H, Pircher H (1994) Peptide-induced T-cell tolerance to prevent autoimmune diabetes in a transgenic mouse model. Proc Natl Acad Sci U S A 91:444–448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aizawa T, Asanuma N, Terauchi Y, Suzuki N, Komatsu M, Itoh N, Nakabayashi T, Hidaka H, Ohnota H, Yamauchi K, Yasuda K, Yazaki Y, Kodawaki T, Hashizume K (1996) Analysis of the pancreatic β-cell in the mouse with targeted disruption of the pancreatic β-cell-specific glucokinase gene. Biochem Biophys Res Commun 229:460–465

    PubMed  Google Scholar 

  • Almind K, Kulkarni RN, Lannon SM, Kahn CR (2003) Identification of interactive loci linked to insulin and leptin in mice with genetic insulin resistance. Diabetes 52:1535–1543

    CAS  PubMed  Google Scholar 

  • Araki E, Lipes MA, Patti ME, Brüning JC, Haag B, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:128–129

    Google Scholar 

  • Argmann CA, Chambon P, Auwerx J (2005) Mouse phenogenomics: the fast track to “systems metabolism”. Cell Metab 2:349–360

    CAS  PubMed  Google Scholar 

  • Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPARγ is required for placental, cardia and adipose tissue development. Mol Cell 4:585–595

    CAS  PubMed  Google Scholar 

  • Bickel PE (2004) Metabolic fuel selection: the importance of being flexible. J Clin Invest 114:1547–1549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Birk OS, Douek DC, Elias D, Takacs K, Dewchand H, Gur SL, Walker MD, Van der Zee R, Cohen IR, Altman DM (1996) A role Hsp60 in autoimmune diabetes: analysis of a transgenic model. Proc Natl Acad Sci U S A 93:1032–1037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    PubMed  Google Scholar 

  • Branda C, Dymecki S (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    CAS  PubMed  Google Scholar 

  • Brünning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn CR (2000) Role of brain insulin receptor incontrol of body weight and reproduction. Science 289:2122–2125

    Google Scholar 

  • Brüning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, Goodyear LJ, Kahn CR (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2:559–569

    PubMed  Google Scholar 

  • Brüning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahm CR (1997) Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88:561–572

    PubMed  Google Scholar 

  • Djoudi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, Gonzalez FJ, Kelly DP (1998) A gender-related defect in lipid metabolism and glucose transport and glucose homeostasis in peroxisome proliferator-activated receptor α-deficient mice. J Clin Invest 102:1083–1091

    Google Scholar 

  • Fernandez AM, Kim JK, Yakar S, Dupont J, Hernandez-Sanchez C, Castle AL, Filmore J, Shulman GI, Le Roith D (2001) Functional inactivation of the IGF-1 and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15:1926–1934

    PubMed Central  CAS  PubMed  Google Scholar 

  • He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM (2003) Adipose-specific peroxisome-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100:15712–15717

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkins AB, Storlien LH (1997) Insulin resistance and hyperinsulinaemia in insulin receptor substrate-1 knockout mice. Diabetologia 40:1113–1114

    CAS  PubMed  Google Scholar 

  • Joshi RL, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D (1996) Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J 15:1542–1547

    PubMed Central  CAS  PubMed  Google Scholar 

  • Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ (1995) Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377:151–155

    CAS  PubMed  Google Scholar 

  • Kim JK, Zisman A, Fillmore JJ, Peroni OD, Kotani K, Perret P, Zong H, Dong J, Kahn CR, Kahn BB, Shulamn GI (2001) Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest 108:153–160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn RC (1999) Tissue specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339

    CAS  PubMed  Google Scholar 

  • Kulkarni RN, Holzenberger M, Shih DQ, Ozcan U, Stoffel M, Magnuson MA, Kahn CR (2002) β-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nat Genet 31:111–115

    CAS  PubMed  Google Scholar 

  • Lauro D, Kido Y, Castle AL, Zarnowski MJ, Hayashi H, Ebina Y, Accili D (1998) Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 20:294–298

    CAS  PubMed  Google Scholar 

  • Laustsen PG, Michael MD, Crute BE, Cohen SE, Ueki K, Kulkarni RN, Keller SR, Lienhard GE, Kahn CR (1998) Lipoatrophic diabetes in Irs(−/−)Irs(−/−) double knockout mice. Genes Dev 16:3213–3222

    Google Scholar 

  • Lavan BE, Lane WS, Lienhard GE (1997) The 60-kDa phosphotyrosine protein in insulin-treated adipocytes ia a new member of the insulin receptor substrate family. J Biol Chem 272:11439–11443

    CAS  PubMed  Google Scholar 

  • Metzger D, Chambon P (2001) Site- and time-specific gene targeting in the mouse. Methods 24:71–80

    CAS  PubMed  Google Scholar 

  • Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, Kahn CR (2000) Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 6:87–97

    CAS  PubMed  Google Scholar 

  • Moller DE (1994) Transgenic approaches to the pathogenesis of NIDDM. Diabetes 43:1394–1401

    CAS  PubMed  Google Scholar 

  • Moritani M, Yoshimoto K, Ii S, Kondo M, Iwahana H, Yamaoka T, Sano T, Nakano N, Kikutani H, Itakura M (1996) Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes: a gene therapy model of autoimmune diabetes. J Clin Invest 98:1851–1859

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, Winegar DA, Corton JC, Dohm GL, Kraus WE (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPARδ. J Biol Chem 277:26089–26097

    CAS  PubMed  Google Scholar 

  • Nandi A, Kitamura Y, Kahn CR, Accilli D (2004) Mouse models of insulin resistance. Physiol Rev 84:623–647

    CAS  PubMed  Google Scholar 

  • Ohashi PS, Oehen S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65:305–317

    CAS  PubMed  Google Scholar 

  • Oldstone MBA, Nerenberg M, Southern P, Price J, Lewicki H (1991) Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell 65:319–331

    CAS  PubMed  Google Scholar 

  • Palmiter RD, Behringer RR, Quaife CJ, Maxwell F, Maxwell IH, Brinster RL (1987) Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50:435–443

    CAS  PubMed  Google Scholar 

  • Plum L, Wunderlich FT, Baudler S, Krone W, Brüning C (2005) Transgenic and knockout mice in diabetes research: novel insights into pathophysiology, limitations, and perspectives. J Physiol 20:152–161

    CAS  Google Scholar 

  • Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci 25:331–336

    CAS  PubMed  Google Scholar 

  • Terauchi Y, Iwamoto K, Tamemoto H, Komeda K, Ishii C, Kanazawa Y, Asanuma N, Aizawa T, Akanuma Y, Yasuda K, Kodama T, Tobe K, Yazaki Y, Kadowaki T (1997) Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and β-cell glucokinase genes. Genetic reconstruction of diabetes as a polygenic disease. J Clin Invest 99:861–866

    PubMed Central  CAS  PubMed  Google Scholar 

  • Von Herrath MG, Holz A (1997) Pathological changes in the islet milieu precede infiltration of islets and destruction in β-cells by autoreactive lymphocytes in a transgenic model of virus-induced IDDM. J Autoimmun 10:231–238

    Google Scholar 

  • Von Herrath MG, Dockter J, Oldstone MBA (1994) How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic mouse model. Immunity 1:231–242

    Google Scholar 

  • Von Herrath MG, Guerder S, Lewicki H, Flavell RA, Oldstone MBA (1995) Coexpression of B7–1 and viral (“self”) transgenes in pancreatic β-cells can break peripheral ignorance and lead to spontaneous autoimmune diabetes. Immunity 3:727–738

    Google Scholar 

  • Von Herrath MG, Hormann D, Gairin JE, Oldstone MBA (1997) Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCVM transgenic mouse model. Biochem Soc Trans 25:630–635

    Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren J-M, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 caused type 2 diabetes. Nature 391:900–907

    CAS  PubMed  Google Scholar 

  • Zhang J, Fu M, Cui T, Xiong C, Xu K, Zhong W, Xiao Y, Floyd D, Liang J, Li E, Song Q, Chen YE (2004) Selective disruption of PPARγ2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci U S A 101:10703–10708

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zisman A, Peroni OD, Abel ED, Michael MD, Mauvais-Jarvis F, Lowell BB, Wojtaszewski JF, Hirshman MF, Virkamaki A, Goodyear LJ, Kahn CR, Kahn BB (2000) Targeted disruption of the glucose transporter 4 selectivity in muscle causes insulin resistance and glucose intolerance. Nat Med 6:924–928

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Müller, G. (2015). Genetically Diabetic Animals. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics