[go: up one dir, main page]

Skip to main content

From Syntactic Proofs to Combinatorial Proofs

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

In this paper we investigate Hughes’ combinatorial proofs as a notion of proof identity for classical logic. We show for various syntactic formalisms including sequent calculus, analytic tableaux, and resolution, how they can be translated into combinatorial proofs, and which notion of identity they enforce. This allows the comparison of proofs that are given in different formalisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    However, this paper does not speak about normalization of combinatorial proofs. For this topic, the reader is referred to [11, 17, 18].

  2. 2.

    Note that this is only a cosmetic limitation. The theory of combinatorial proofs can easily be extended to the full language including implication and general negation.

  3. 3.

    It cannot happen that both \(\varGamma \) and \(\varDelta \) are empty.

References

  1. Bellin, G., van de Wiele, J.: Subnets of proof-nets in MLL\(^-\). In: Advances in Linear Logic, pp. 249–270. Cambridge University Press (1995)

    Google Scholar 

  2. Brünnler, K., Tiu, A.F.: A local system for classical logic. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 347–361. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45653-8_24

    Chapter  MATH  Google Scholar 

  3. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1), 36–50 (1979)

    Article  MathSciNet  Google Scholar 

  4. Das, A.: On the relative proof complexity of deep inference via atomic flows. Log. Methods Comput. Sci. 11(1), 1–23 (2015)

    Article  MathSciNet  Google Scholar 

  5. Das, A., Straßburger, L.: On linear rewriting systems for Boolean logic and some applications to proof theory. Log. Methods Comput. Sci. 12(4), 1–27 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Duffin, R.: Topology of series-parallel networks. J. Math. Anal. Appl. 10(2), 303–318 (1965)

    Article  MathSciNet  Google Scholar 

  7. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer Science & Business Media, Heidelberg (2012)

    MATH  Google Scholar 

  8. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift 39, 176–210 (1935)

    Article  MathSciNet  Google Scholar 

  9. Guglielmi, A., Straßburger, L.: Non-commutativity and MELL in the calculus of structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 54–68. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_5

    Chapter  Google Scholar 

  10. Hughes, D.: Proofs Without Syntax. Ann. Math. 164(3), 1065–1076 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hughes, D.: Towards Hilbert’s 24\({}^{\text{ th }}\) problem: combinatorial proof invariants: (preliminary version). Electr. Notes Theor. Comput. Sci. 165, 37–63 (2006)

    Article  Google Scholar 

  12. Hughes, D.J.: Unification nets: canonical proof net quantifiers. In: LICS 2018 (2018)

    Google Scholar 

  13. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In: Advances in Modal Logic 10 (2014)

    Google Scholar 

  14. Retoré, C.: Handsome proof-nets: perfect matchings and cographs. Theor. Comput. Sci. 294(3), 473–488 (2003)

    Article  MathSciNet  Google Scholar 

  15. Smullyan, R.M.: First-Order Logic. Courier Corporation, Massachusetts (1995)

    MATH  Google Scholar 

  16. Straßburger, L.: A characterization of medial as rewriting rule. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 344–358. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73449-9_26

    Chapter  MATH  Google Scholar 

  17. Straßburger, L.: Combinatorial flows and proof compression. Research report RR-9048, Inria Saclay (2017). https://hal.inria.fr/hal-01498468

  18. Straßburger, L.: Combinatorial flows and their normalisation. In: Miller, D. (ed.) FSCD 2017. LIPIcs, vol. 84, pp. 31:1–31:17. Schloss Dagstuhl (2017)

    Google Scholar 

  19. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, vol. 43. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acclavio, M., Straßburger, L. (2018). From Syntactic Proofs to Combinatorial Proofs. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics