Abstract
A new shear model for slender fibre-reinforced concrete members without shear reinforcement based on the principles of structural mechanics is presented. It is assumed that the shear strength is corresponding to a failure taking place at the neutral axis when the principal tensile stress of concrete reaches the concrete tensile strength, which constructs a sudden crack connecting to the critical shear crack tip. Realistic values of material and structural properties including concrete tensile strength, residual tensile stress of fibre concrete, fracture energy, crack width as well as crack spacing are analysed and directly taken into account in the new model without any modification. In contrast to existing shear models, size effect is naturally considered through tensile fracture energy of concrete together with crack spacing. The accuracy of the proposed method has been verified by comparing the model predictions with experimental results of different concrete members, providing consistent and better prediction results than those of the shear models in current codes of practice. The results according to this validation are discussed, leading some conclusions on the new shear.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, S.H., Khaloo, A.R., Poveda, A.: Shear capacity of reinforced HSC beams. ACI J. 83, 297–305 (1984)
Angelakos, D.: The influence of concrete strength and longitudinal reinforcement ratio on the shear strength of large-size reinforced concrete beams with and without shear reinforcement. M.Sc. Thesis, Dept. of Civil Eng., University of Toronto (1999)
Araújo, D.L., Nunes, F.G.T., Filho, R.D.T.F., Andrade, M.A.S.: Shear strength of steel fiber-reinforced concrete beams. Acta Scientiarum. Technology. Maringá 36, 389–397 (2014)
Aster, H., Koch, R.: Schubtragfähigkeit dicker Stahlbetonplatten. Beton- und Stahlbetonbau 69, 266–270 (1974)
Bažant, Z.P.: Size effect in blunt fracture: concrete, rock, metal. J. Eng. Mech. 110, 518–535 (1984)
Bhal, N.S.: Über den Einfluss der Balkenhöhe auf die Schubtragfähigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Stuttgart (1967)
Cao, S.: Size effect and the influence of longitudinal reinforcement on the shear response of large reinforced concrete members. M.Sc. Thesis, Department of Civil Engineering, University of Toronto, Toronto, Canada (2001)
DAfStb-Heft 614: Erläuterungen zur DAfStb-Richtlinie Stahlfaserbeton. DAfStb, Heft 614, Beuth, Berlin (2015)
Dinh, H.H.: Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement. Dissertation, University of Michigan (2009)
EC2. Design of concrete structures – Part 1-1: general rules for buildings (EN 1992-1-1). European Committee for Standardization, Brussels (2010)
Elzanty, A.H., Nilson, A.H., Slate, F.O.: Shear capacity of reinforced concrete beams using high strength concrete. ACI J. 83, 290–296 (1986)
Ghannoum, W.M.: Size effect on shear strength of reinforced concrete beams. M.Sc Thesis, MC Gill University, Department of Civil Engineering and Applied Mechanics, Montreal, Canada (1998)
Grimm, R.: Einfluß bruchmechanischer Kenngrößen auf das Biege- und Schubtragverhalten hochfester Betone. Dissertation, Fachbereich Konstructiver Ingenieurbau der TH Darmstadt (1997)
Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–781 (1976)
Kani, G.N.J.: How safe are our large reinforced concrete beams? ACI J. 64, 128–141 (1967)
Kawano, H., Watanabe, H.: Shear strength of reinforced concrete columns - effect of specimen size and load reversa. In: Proceedings of 2nd Italy-Japan Workshop on Seismic Design and Retrofit of Bridges, Rome, Italy, 27–28 February, pp. 141–154 (1997)
Kim, J.K., Park, Y.D.: Shear strength of reinforced high strength concrete beams without web reinforcement. Mag. Concr. Res. 46, 7–16 (1994)
König, G., Tue, N.V.: Grundlagen und Bemessungshilfen für die Rißbreitenbeschränkung im Stahlbeton und Spannbeton sowie Kommentare, Hintergundinformationen und Anwendungsbeispiele zu den Regelungen nach DIN 1045, EC2 und Model Code 90. Heft 466 - Deutscher Ausschuss für Stahlbeton. Beuth Verlag GmbH, Berlin (1996)
Krefeld, W., Thurston, C.: Contribution of longitudinal steel to shear resistance of reinforced concrete beams. ACI J. 63, 325–344 (1966)
Löfgren, I.: Calculation of crack width and crack spacing. In: Nordic Mini-Seminar: “Fibre Reinforced Concrete”. Trondheim (2007)
Marí, A., Bairán, J., Cladera, A., Oller, E., Ribas, C.: Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams. Struct. Infrastruct. Eng. 11, 1399–1419 (2015)
MC 2010. fib Model Code for Concrete Structures 2010. Ernst & Sohn (2013)
Muttoni, A.: Schubfestigkeit und Durchstanzen von Platten ohne Querkraftbewehrung. Beton- und Stahlbetonbau 98, 74–84 (2003)
Parmentier, B., Cauberg, N., Vandewalle, L.: Shear resistance of macro-synthetic and steel fibre reinforced concrete beams without stirrups. In: Barros, J., et al. (eds.) 8th RILEM International Symposium on Fiber Reinforced Concrete: Challenges and Opportunities, 12 pages. UM, Guimarães (2012)
Reineck, K.H.: Ein mechanisches Modell für den Querkraftbereich von Stahlbetonbauteilen. Dissertation, Universität Stuttgart (1990)
Reineck, K.H., Kuchma, D.A., Fitik, B.: Erweiterte Datenbanken zur Überprüfung der Querkraftbemessung für Konstruktionsbetonbauteile mit und ohne Bügel. Heft 597, Berlin (2012)
Rosenbusch, J.: Zur Querkrafttragfähigkeit von Balken aus stahlfaserverstärktem Stahlbeton. Dissertation, Fachbereich Bauingenieurwesen, Technische Universität Carolo-Wilhelmina zu Braunschweig (2003)
Sahoo, D.R., Sharma, A.: Effect of steel fiber content on behavior of concrete beams with and without sirrups. ACI Struct. J. 111, 1157–1166 (2014)
Shoaib, A., Lubell, A.S., Bindiganavile, V.S.: Shear response of lightweight steel fiber reinforced concrete. Mater. Struct. 3141–3157 (2015)
Taylor, H.P.J.: Shear strength of large beams. ASCE 98, 2473–2490 (1972)
Tung, N.D., Tue, N.V.: A new approach to shear design of slender reinforced concrete members without shear reinforcement. Eng. Struct. 107, 180–194 (2016)
Vecchio, F.J., Collins, M.P.: The modified compression field theory for reinforced concrete elements subjected to shear. ACI J. 83, 219–231 (1986)
Wittmann, F.: Crack formation and fracture energy of normal and high strength concrete. Sadhana 27, 413–423 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Tran, N.L. (2018). A New Shear Model for Fibre-Reinforced Concrete Members Without Shear Reinforcement. In: Hordijk, D., Luković, M. (eds) High Tech Concrete: Where Technology and Engineering Meet. Springer, Cham. https://doi.org/10.1007/978-3-319-59471-2_86
Download citation
DOI: https://doi.org/10.1007/978-3-319-59471-2_86
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59470-5
Online ISBN: 978-3-319-59471-2
eBook Packages: EngineeringEngineering (R0)