Abstract
Grammar-based Genetic Programming (GBGP) searches for a computer program in order to solve a given problem. Grammar constrains the set of possible programs in the search space. It is not obvious to write an appropriate grammar for a complex problem. Our proposed Bayesian Grammar-Based Genetic Programming with Hierarchical Learning (BGBGP-HL) aims at automatically designing new rules from existing relatively simple grammar rules during evolution to improve the grammar structure. The new grammar rules also reflects the new understanding of the existing grammar under the given fitness evaluation function. Based on our case study in asymmetric royal tree problem, our evaluation shows that BGBGP-HL achieves the best performance among the competitors. Compared to other algorithms, search performance of BGBGP-HL is demonstrated to be more robust against dependencies and the changes in complexity of programs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anthony, W.: Learning to discover rules by discovery. J. Educ. Psychol. 64(3), 325 (1973)
Attias, H.: Inferring parameters and structure of latent variable models by variational bayes. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 21–30. Morgan Kaufmann Publishers Inc. (1999)
Booth, T.L., Thompson, R.A.: Applying probability measures to abstract languages. Comput. IEEE Trans. 100(5), 442–450 (1973)
Cooper, G.F., Herskovits, E.: A bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Series B (Methodological) 39, 1–38 (1977)
Hasegawa, Y., Iba, H.: Estimation of bayesian network for program generation. In: Proceedings 3rd Asian-Pacific Workshop on Genetic Programming, p. 35 (2006)
Hasegawa, Y., Iba, H.: A bayesian network approach to program generation. IEEE Trans. Evol. Comput. 12(6), 750–764 (2008)
Hasegawa, Y., Iba, H.: Latent variable model for estimation of distribution algorithm based on a probabilistic context-free grammar. IEEE Trans. Evol. Comput. 13(4), 858–878 (2009)
Hasegawa, Y., Ventura, S.: Programming with annotated grammar estimation. In: Genetic Programming-New Approaches and Successful, pp. 49–74 (2012)
Kim, K., Shan, Y., Nguyen, X.H., McKay, R.I.: Probabilistic model building in genetic programming: A critical review. Genet. Program. Evolvable Mach. 15(2), 115–167 (2014)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Oxford (2009)
Koza, J.R.: Genetic Programming: vol. 1, On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y.: ONeill, M.: Grammar-based genetic programming: a survey. Genet. Program. Evol. Mach. 11(3–4), 365–396 (2010)
O’Neill, M., Brabazon, A.: Grammatical differential evolution. In: IC-AI, pp. 231–236 (2006)
O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4), 349–358 (2001)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Springer, Heidelberg (2003)
O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: the evolution of grammar and genetic code. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 138–149. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24650-3_13
Punch, W.F.: How effective are multiple populations in genetic programming. Genet. Program. 98, 308–313 (1998)
Regolin, E.N., Pozo, A.T.R.: Bayesian automatic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 38–49. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31989-4_4
Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic for combinatorial optimization problems. Evol. Comput. IEEE Trans. 17(6), 840–861 (2013)
Salustowicz, R., Schmidhuber, J.: Probabilistic incremental program evolution. Evol. Comput. 5(2), 123–141 (1997)
Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice. Genetic Programming Series, vol. 6, pp. 205–220. Springer, Heidelberg (2003). doi:10.1007/978-1-4419-8983-3_13
Tanev, I.: Incorporating learning probabilistic context-sensitive grammar in genetic programming for efficient evolution and adaptation of snakebot. In: Keijzer, M., Tettamanzi, A., Collet, P., Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 155–166. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31989-4_14
Whigham, P.A.: Grammatically-based genetic programming. In: Proceedings of the Workshop on Genetic Programming: from Theory to Real-World Applications. vol. 16, pp. 33–41 (1995)
Wong, M.L., Leung, K.S.: Applying logic grammars to induce sub-functions in genetic programming. In: IEEE International Conference on Evolutionary Computation, 1995, vol. 2, pp. 737–740. IEEE (1995)
Wong, P.K., Lo, L.Y., Wong, M.L., Leung, K.S.: Grammar-based genetic programming with dependence learning and bayesian network classifier. In: Proceedings of GECCO 2014, pp. 959–966. ACM (2014)
Acknowledgments
This research is supported by General Research Fund LU310111 from the Research Grant Council of the Hong Kong Special Administrative Region and the Lingnan University Direct Grant DR16A7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Wong, PK., Wong, ML., Leung, KS. (2016). Learning Grammar Rules in Probabilistic Grammar-Based Genetic Programming. In: MartÃn-Vide, C., Mizuki, T., Vega-RodrÃguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science(), vol 10071. Springer, Cham. https://doi.org/10.1007/978-3-319-49001-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-49001-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49000-7
Online ISBN: 978-3-319-49001-4
eBook Packages: Computer ScienceComputer Science (R0)