[go: up one dir, main page]

Skip to main content

Implementing Cantor’s Paradise

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10017))

Included in the following conference series:

  • 570 Accesses

Abstract

Set-theoretic paradoxes have made all-inclusive self-referential Foundational Theories almost a taboo. The few daring attempts in the literature to break this taboo avoid paradoxes by restricting the class of formulæ allowed in Cantor’s naïve Comprehension Principle. A different, more intensional approach was taken by Fitch, reformulated by Prawitz, by restricting, instead, the shape of deductions, namely allowing only normal(izable) deductions. The resulting theory is quite powerful, and consistent by design. However, modus ponens and Scotus ex contradictione quodlibet principles fail. We discuss Fitch-Prawitz Set Theory (\(\mathsf {FP}\)) and implement it in a Logical Framework with so-called locked types, thereby providing a “Computer-assisted Cantor’s Paradise”: an interactive framework that, unlike the familiar Coq and Agda, is closer to the familiar informal way of doing mathematics by delaying and consolidating the required normality tests. We prove a Fixed Point Theorem, whereby all partial recursive functions are definable in \(\mathsf {FP}\). We establish an intriguing connection between an extension of \(\mathsf {FP}\) and the Theory of Hyperuniverses: the bisimilarity quotient of the coalgebra of closed terms of \(\mathsf {FP}\) satisfies the Comprehension Principle for Hyperuniverses.

Dedicated to Marco Forti for his 70th birthday

Aus dem Paradies, das Cantor uns geschaffen hat,

soll uns niemand vertreiben können.

David Hilbert

Work supported by the COST Action IC1201 BETTY “Behavioural Types for Reliable Large-Scale Software Systems” and by the COST Action CA15123 EUTYPES “The European research network on types for programming and verification”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessi, F., Baldan, P., Honsell, F.: A category of compositional domain-models for separable Stone spaces. Theor. Comput. Sci. 2901, 599–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets. CoRR, abs/1111.7148 (2011). http://arXiv.org/abs/1111.7148

  3. Capretta, V.: General recursion via coinductive types. Log. Meth. Comput. Sci. 1(2), 1–18 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Casinghino, C., Sjöberg, V., Weirich, S.: Combining proofs and programs in a dependently typed language. In: POPL 2014, pp. 33–45. ACM (2014)

    Google Scholar 

  5. Development Team: Assistant, The Coq Proof Documentation, system download. http://coq.inria.fr/

  6. Danielsson, N.A., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose reasoning is morally correct. In: POPL 2006, pp. 206–217. ACM (2006)

    Google Scholar 

  7. Forti, M., Hinnion, R.: The consistency problem for positive comprehension principles. J. Symb. Log. 54, 1401–1418 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Forti, M., Honsell, F.: Models of self-descriptive set theories. In: Colombini, F., Marino, A., Modica, L., Spagnolo, S. (eds.) Partial Differential Equations and the Calculus of Variations. Birkhäuser, Boston (1989). Dedicated to Ennio De Giorgi on his sixtieth birthday

    Google Scholar 

  9. Forti, M., Honsell, F., Lenisa, M.: Processes and hyperuniverses. In: Prívara, I., Rovan, B., Ruzička, P. (eds.) MFCS 1994. LNCS, vol. 841, pp. 352–363. Springer, Heidelberg (1994). doi:10.1007/3-540-58338-6_82

    Chapter  Google Scholar 

  10. Forti, M., Honsell, F.: A general construction of hyperuniverses. Theor. Comput. Sci. 156(1&2), 203–215 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fitch, F.B.: A demonstrably consistent mathematics. J. Symb. Log. 15(1), 17–24 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fitch, F.B.: Symbolic Logic - An Introduction. The Ronald Press, New York (1952)

    MATH  Google Scholar 

  13. Girard, J.-Y.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998). doi:10.1006/inco.1998.2700

    Article  MathSciNet  MATH  Google Scholar 

  14. Grishin, V.N.: Predicate and set-theoretic calculi based on logics without contractions. Math. USSR Izv. 18, 41–59 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM (JACM) 40(1), 143–184 (1993). ACM

    Article  MathSciNet  MATH  Google Scholar 

  16. Honsell, F., Lenisa, M., Liquori, L., Maksimovic, P., Scagnetto, I.: An open logical framework. JLC 26(1), 293–335 (2016). (First pub. in 2013)

    MathSciNet  MATH  Google Scholar 

  17. Honsell, F., Liquori, L., Maksimovic, P., Scagnetto, I.: A logical framework for modeling external evidence, side conditions, and proof irrelevance using monads. In: LMCS (2016, to appear)

    Google Scholar 

  18. Jacobs, B., Rutten, J.: An introduction to (co)algebras and (co)induction. In: Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coinduction, pp. 38–99. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  19. Pfenning, F., Schürmann, C.: System description: twelf—a meta-logical framework. In: Pfenning, F., Schürmann, C. (eds.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999). doi:10.1007/3-540-48660-7_14

    Chapter  Google Scholar 

  20. Prawitz, D.: Natural Deduction – A proof-theoretical Study. Dover Publications, New York (2006)

    MATH  Google Scholar 

  21. The Twelf Project. http://twelf.org/wiki/Totality_assertion

  22. Wang, Y., Nadathur, G.: Towards extracting explicit proofs from totality checking in twelf. In: LFMTP 2013, pp. 55–66. ACM (2013)

    Google Scholar 

  23. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical framework: the propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24849-1_23

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous referees, and to Oleg Kiselyov, for many useful remarks and intriguing questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Scagnetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Honsell, F., Lenisa, M., Liquori, L., Scagnetto, I. (2016). Implementing Cantor’s Paradise. In: Igarashi, A. (eds) Programming Languages and Systems. APLAS 2016. Lecture Notes in Computer Science(), vol 10017. Springer, Cham. https://doi.org/10.1007/978-3-319-47958-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47958-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47957-6

  • Online ISBN: 978-3-319-47958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics