[go: up one dir, main page]

Skip to main content

Abstract

Thrombin is a potent platelet agonist that acts through protease-activated receptors (PARs) on platelet surface. PAR-1 is considered the main thrombin receptor in human platelets, while the roles of PAR-4 are not completely understood. Vorapaxar is the most widely studied PAR-1 antagonist and is the first in its class to be approved for clinical use, with indication for secondary prevention of recurrent ischemic events in patients with previous myocardial infarction or peripheral artery disease. In the chapter we will review the peculiar mechanism of action of PARs, their roles in hemostasis and thrombosis, and the pharmacology of vorapaxar. We will also review the main clinical data with special attention on the delicate balance between prevention of thrombosis and risk of bleeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexander JH, Lopes RD, James S et al (2011) Apixaban with antiplatelet therapy after acute coronary syndrome. N Engl J Med 365(8):699–708

    Article  CAS  PubMed  Google Scholar 

  • Angiolillo DJ, Capodanno D, Goto S (2010) Platelet thrombin receptor antagonism and atherothrombosis. Eur Heart J 31(1):17–28

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Ricks TK, Trejo J (2007) Protease-activated receptor signalling, endocytic sorting and dysregulation in cancer. J Cell Sci 120(Pt 6):921–928

    Article  CAS  PubMed  Google Scholar 

  • Becker RC, Moliterno DJ, Jennings LK et al (2009) Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 373(9667):919–928

    Article  CAS  PubMed  Google Scholar 

  • Bohula EA, Aylward PE, Bonaca MP et al (2015) Efficacy and safety of vorapaxar with and without a thienopyridine for secondary prevention in patients with previous myocardial infarction and no history of stroke or transient ischemic attack: results from TRA 2°P-TIMI 50. Circulation 132(20):1871–1879

    CAS  PubMed  Google Scholar 

  • Bonaca MP, Scirica BM, Creager MA et al (2013) Vorapaxar in patients with peripheral artery disease: results from TRA2°P-TIMI 50. Circulation 127(14):1522–1529

    Article  CAS  PubMed  Google Scholar 

  • Bonaca MP, Scirica BM, Braunwald E et al (2014) Coronary stent thrombosis with vorapaxar versus placebo: results from the TRA 2°P-TIMI 50 trial. J Am Coll Cardiol 64(22):2309–2317

    Article  CAS  PubMed  Google Scholar 

  • Chackalamannil S, Xia Y, Greenlee WJ et al (2005) Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. J Med Chem 48(19):5884–5887

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ishii M, Wang L, Ishii K, Coughlin SR (1994) Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J Biol Chem 269(23):16041–16045

    CAS  PubMed  Google Scholar 

  • Chintala M, Strony J, Yang B, Kurowski S, Li Q (2010) SCH 602539, a protease-activated receptor-1 antagonist, inhibits thrombosis alone and in combination with cangrelor in a Folts model of arterial thrombosis in cynomolgus monkeys. Arterioscler Thromb Vasc Biol 30(11):2143–2149

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen I, Palmer D, David T et al (2010) Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis. Proc Natl Acad Sci USA 107(43):18605–18610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3(8):1800–1814

    Article  CAS  PubMed  Google Scholar 

  • Dutta P, Courties G, Wei Y et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7407):325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farndale RW, Sixma JJ, Barnes MJ, de Groot PG (2004) The role of collagen in thrombosis and hemostasis. J Thromb Haemost 2(4):561–573

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist I, Bonaca MP, Scirica BM et al (2015) Vorapaxar and peripheral revascularization: insights from the TRA2P-TIMI 50 trial. J Am Coll Cardiol 65 (10_S) (15):S0735–1097

    Google Scholar 

  • Goto S, Yamaguchi T, Ikeda Y, Kato K, Yamaguchi H, Jensen P (2010) Safety and exploratory efficacy of the novel thrombin receptor (PAR-1) antagonist SCH530348 for non-ST-segment elevation acute coronary syndrome. J Atheroscler Thromb 17(2):156–164

    Article  CAS  PubMed  Google Scholar 

  • Gurbel PA, Bliden KP, Turner SE et al (2015) Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease. Arterioscler Thromb Vasc Biol doi:10.1161/atvbaha.115.931306777

  • Hamilton JR, Cornelissen I, Coughlin SR (2004) Impaired hemostasis and protection against thrombosis in protease-activated receptor 4-deficient mice is due to lack of thrombin signaling in platelets. J Thromb Haemost 2(8):1429–1435

    Article  CAS  PubMed  Google Scholar 

  • Jennings LK (2009) Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost 102(2):248–257

    CAS  PubMed  Google Scholar 

  • Judge HM, Jennings LK, Moliterno DJ et al (2015) PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact. Platelets 26(3):236–242

    Article  CAS  PubMed  Google Scholar 

  • Kosoglou T, Reyderman L, Tiessen RG et al (2012) Pharmacodynamics and pharmacokinetics of the novel PAR-1 antagonist vorapaxar (formerly SCH 530348) in healthy subjects. Eur J Clin Pharmacol 68(3):249–258

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53(2):245–282

    CAS  PubMed  Google Scholar 

  • Magnani G, Bonaca MP, Braunwald E et al (2015) Efficacy and safety of vorapaxar as approved for clinical use in the United States. J Am Heart Assoc 4(3):e001505

    Article  PubMed  PubMed Central  Google Scholar 

  • Mega JL, Braunwald E, Wiviott SD et al (2012) Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med 366(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue ML, Bhatt DL, Wiviott SD et al (2011) Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes: the lessons from antagonizing the cellular effects of thrombin-acute coronary syndromes trial. Circulation 123(17):1843–1853

    Article  PubMed  Google Scholar 

  • O'Callaghan K, Kuliopulos A, Covic L (2012) Turning receptors on and off with intracellular pepducins: new insights into G-protein-coupled receptor drug development. J Biol Chem 287(16):12787–12796

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts DE, McNicol A, Bose R (2004) Mechanism of collagen activation in human platelets. J Biol Chem 279(19):19421–19430

    Article  CAS  PubMed  Google Scholar 

  • Rooke TW, Hirsch AT, Misra S et al (2011) ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124(18):2020–2045

    Article  Google Scholar 

  • Scirica BM, Bonaca MP, Braunwald E et al (2012) Vorapaxar for secondary prevention of thrombotic events for patients with previous myocardial infarction: a prespecified subgroup analysis of the TRA 2 degrees P-TIMI 50 trial. Lancet 380(9850):1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Shinohara Y, Goto S, Doi M, Jensen P (2012) Safety of the novel protease-activated receptor-1 antagonist vorapaxar in Japanese patients with a history of ischemic stroke. J Stroke Cerebrovasc Dis 21(4):318–324

    Article  PubMed  Google Scholar 

  • Storey RF, Kotha J, Smyth SS et al (2014) Effects of vorapaxar on platelet reactivity and biomarker expression in non-ST-elevation acute coronary syndromes. The TRACER pharmacodynamic substudy. Thromb Haemost 111(5):883–891

    Article  CAS  PubMed  Google Scholar 

  • Trejo J, Hammes SR, Coughlin SR (1998) Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci USA 95(23):13698–13702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricoci P, Huang Z, Held C et al (2012) Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 366(1):20–33

    Google Scholar 

  • Tricoci P, Lokhnygina Y, Huang Z et al (2014) Vorapaxar with or without clopidogrel after non-ST-segment elevation acute coronary syndromes: results from the thrombin receptor antagonist for clinical event reduction in acute coronary syndrome trial. Am Heart J 168(6):869–877

    Article  CAS  PubMed  Google Scholar 

  • Vandendries ER, Hamilton JR, Coughlin SR, Furie B, Furie BC (2007) Par4 is required for platelet thrombus propagation but not fibrin generation in a mouse model of thrombosis. Proc Natl Acad Sci USA 104(1):288–292

    Article  CAS  PubMed  Google Scholar 

  • Whellan DJ, Tricoci P, Chen E et al (2014) Vorapaxar in acute coronary syndrome patients undergoing coronary artery bypass graft surgery: subgroup analysis from the TRACER trial (Thrombin Receptor Antagonist for Clinical Event Reduction in Acute Coronary Syndrome). J Am Coll Cardiol 63(11):1048–1057

    Article  CAS  PubMed  Google Scholar 

  • Wiviott SD, Flather MD, O’Donoghue ML et al (2011) Randomized trial of atopaxar in the treatment of patients with coronary artery disease: the lessons from antagonizing the cellular effect of thrombin-coronary artery disease trial. Circulation 123(17):1854–1863

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Tricoci MD, PhD, MHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

GuimarĂ£es, P.O., Tricoci, P. (2017). PAR Antagonists. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_87

Download citation

Publish with us

Policies and ethics