[go: up one dir, main page]

Skip to main content

Recent Progress on Rubber Based Biocomposites: From Carbon Nanotubes to Ionic Liquids

  • Chapter
  • First Online:
Green Biocomposites

Abstract

Currently, reinforcement of a polymer matrix via the integration of fillers is a common industrial exercise which improves the properties of the composite material. Rubber nanocomposites (NCs) demonstrated remarkable properties due to the interaction between the polymer and filler and the homogeneous dispersion of the filler within the polymer matrix. These improved properties included increased stiffness, high strength, reduced elongation to failure, improved resistance to crack growth and tearing and finally various modifications of abrasion, dynamic and fatigue properties, due to their high surface area and significant aspect ratios. Different reinforcing fillers have been incorporated in the rubber to develop elastomeric composites having improved properties. This current chapter focus on development, properties and applications of various elastomeric composites. Secondly, this chapter also emphasis on ionic liquids (ILs) role as additives in elastomer composites as well as effects of nanofillers on elastomer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[Amim][Ntf2]:

1-Allyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide

CR:

Chloroprene rubber

CB:

Carbon Black

[Emim][Ntf2]:

1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide

[Emim][SCN]:

1-Ethyl-3-Methylimidazolium Thiocynate

HNBR:

Hydrogenated Nitrile Rubber

[Hmim][Ntf2]:

1-Hexyl-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide

FHT:

Fluorohectorite

MMT:

Montmorillonite

MWCNT:

Multiwalled Carbon Nanotubes

NCs:

Nanocomposites

NPs:

Nanoparticles

NR:

Natural Rubber

NBR:

Acrylonitrile–Butadiene Rubber

NBR:

Nitrile Rubber

SiC:

Silicon Carbide

SBR:

Styrene Butadiene Rubber

SWCNT:

Single-Walled Carbon Nanotubes

T g :

Glass Transition Temperature

XSBR:

Carboxylated Styrene Butadiene Rubber

References

  • Abrate S (1986) The mechanics of short fiber-reinforced composites: a review. Rubber Chem Technol 59:384

    Article  CAS  Google Scholar 

  • Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104:276–283

    Article  CAS  Google Scholar 

  • Ahir SV, Squires AM, Tajbakhsh AR, Terentjev EM (2006) Infrared actuation in aligned polymer-nanotube composites. Phys Rev B 73(8):085420

    Article  CAS  Google Scholar 

  • Al-Yamani F, Goettler LA (2007) Nanoscale rubber reinforcement: a route to enhanced intercalation in rubber-silicate nanocomposites. Rubber Chem Technol 80(1):100

    Google Scholar 

  • Andrews R, Weisenberger MC (2004) Carbon nanotube polymer composites. Curr Opin Solid State Mater Sci 8(1):31–37

    Article  CAS  Google Scholar 

  • Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35(12):1008–1017

    Article  CAS  Google Scholar 

  • Anmin H, Xiaoping W, Demin J, Yanmei L (2007) Thermal stability and aging characteristics of HNBR/clay nanocomposites in air, water and oil at elevated temperature. e-Polymers 51:1–11

    Google Scholar 

  • Anuar H, Ahmad S, Rasid R, Ahmad A, Busu W (2008) Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 107(6):4043–4052

    Article  CAS  Google Scholar 

  • Armand MEF, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  • Arumugam N, Tamareselvy K, Venkata Rao K, Rajalingam P (1989) Coconut-fiber-reinforced rubber composites. J Appl Polym Sci 37:2645–2659

    Article  CAS  Google Scholar 

  • Bana R, Banthia AK (2009) Preparation and characterisation of green nanocomposites of biodegradable poly(vinyl-alcohol-co-ethylene) and wood dust. Pigm Resin Technol 38(5):275–279

    Article  CAS  Google Scholar 

  • Barrer RM, Barrie JA, Rogers MG (1963) Heterogenous membranes: diffusion in filled rubber. J Polym Sci A Polym Chem 1:2565–2586

    Google Scholar 

  • Bastiurea M, Rodeanu MS, Dima D (2015) Thermal andmechanical properties of polyester composites with graphene oxide and graphite. Dig J Nanomater Bios 10(2):521–533

    Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792

    Article  CAS  Google Scholar 

  • Benes M, Goettler LA (2002) Improved properties of short fiber rubber composites through nanoscale co-reinforcement. ACS Rubber Division, Savannah, Georgia, USA. April 29–May 1, Paper No. 5

    Google Scholar 

  • Bhattacharya TB, Biswas AK, Chaterjee J, Pramanick D (1986) Short pineapple leaf fibre reinforced rubber composites. Plast Rubbers Process Appl 6:119–125

    Google Scholar 

  • Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  CAS  Google Scholar 

  • Bokobza L, Belin C (2007) Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes. J Appl Polym Sci 105(4):2054–2061

    Article  CAS  Google Scholar 

  • Bokobza L, Kolodziej M (2006) On the use of carbon nanotubes as reinforcing fillers for elastomeric materials. Polym Int 55(9):1090–1098

    Article  CAS  Google Scholar 

  • Brody GS (1997) On the safety of breast implants. Plast Reconstr Surg 100:1314

    Article  CAS  Google Scholar 

  • Buffa F, Abraham GA, Grady BP, Resasco D (2007) Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites. J Polym Sci B Polym Phys 45(4):490–501

    Article  CAS  Google Scholar 

  • Cataldo F (2007) Preparation and properties of nanostructured rubber composites with montmorillonite. Macromol Symp 247:67–77

    Article  CAS  Google Scholar 

  • Chakraborty SK, Setua DK, De SK (1982) Short jute fiber reinforced carboxylated nitrile rubber. Rubber Chem Technol 55:1286–1307

    Article  CAS  Google Scholar 

  • Chakravarty SN, Chakravarty A (2007) Reinforcement of rubber compounds with nano-filler. KGK-Kautschuk Gummi Kunststoffe 11:619–622

    Google Scholar 

  • Cho MS, Seo HJ, Nam JD, Choi HR, Koo JC, Song KG et al (2006) A solid state actuator based on the PEDOT/NBR system. Sens Actuators B 119:621–624

    Google Scholar 

  • Cho MSSHJ, Nam JD, Choi HR, Koo JC, Lee Y (2007) High ionic conductivity and mechanical strength of solid polymer electrolytes based on NBR/ionic liquid and its application to an electrochemical actuato. Sens Actuators B 128:70–74

    Article  CAS  Google Scholar 

  • Chodák IPS, Jarĉuŝková J, Jurĉiová J (2010) Changes in electrical conductivity during mechanical deformation of carbon black filled elastomeric matrix. Open Macromol J 4:32–36

    Google Scholar 

  • Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984

    Article  CAS  Google Scholar 

  • Cipriani G, Salvini A, Baglioni P, Bucciarelli E (2010) Cellulose as a renewable resource for the synthesis of wood consolidants. J Appl Polym Sci 118(5):2939–2950

    Article  CAS  Google Scholar 

  • Cooper C, Young R, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos A Appl Sci Manuf 32(3):401–411

    Article  Google Scholar 

  • Coran AY, Boustany K, Hamed P (1974) Short-fiber—rubber composites: the properties of oriented cellulose-fiber—elastomer composites. Rubber Chem Technol 47:396–410

    Article  CAS  Google Scholar 

  • Cornish K (2001) Biochemistry of natural rubber, a vital raw material, emphasizing biosynthetic rate, molecular weight and compartmentalization, in evolutionary divergent plan species. Nat Prod Rep 18:182–189

    Article  CAS  Google Scholar 

  • Curtzwiler G, Singh J, Miltz J, Vorst K (2008) Characterization and compression properties of injection molded carbon nanotube composites. J Appl Polym Sci 109(1):218–225

    Article  CAS  Google Scholar 

  • Das A, Stöckelhuber KW, Jurk R, Fritzsche J, Kluppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47:3313–3321

    Google Scholar 

  • De Coster N, Magg H (2003) NBR in contact with food, potable water, pharmaceutical and cosmetic applications. Kautsch Gummi Kunstst 7(8):405–411

    Google Scholar 

  • De Falco A, Goyanes S, Rubiolo GH, Mondragon I, Marzocca A (2007) Carbon nanotubes as reinforcement of styrene–butadiene rubber. Appl Surf Sci 254(1):262–265

    Article  CAS  Google Scholar 

  • de Souza RF, Padilha JC, Gonçalves RS, Dupont J (2003) Room temperature dialkylimidazolium ionic liquid-based fuel cells. Electrochem Commun 5:728

    Google Scholar 

  • Derringer DC (1971) Compounding with fibers for high performance elastomer compounds. Rubber World 45:165

    Google Scholar 

  • Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 63(8):1085–1088

    Article  CAS  Google Scholar 

  • Drzal LT (2002) Environmentally friendly bio-composites from soy-based bio-plastic and natural fiber. Polym Mat Sci Eng 87:117

    CAS  Google Scholar 

  • El Fray M, Goettler LA (2010) Chapter 24, Application of rubber nanocomposites, in the book “Rubber nanocomposites: preparation, properties and applications”. In: Thomas S, Stephen R (eds) John Wiley & Sons (Asia) Pte Ltd

    Google Scholar 

  • Feeney CA, Goldberg HA, Farrell M et al (2006) Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid carrier and coated articles. US Patent 10741251, to InMat Inc

    Google Scholar 

  • Ferreira AFSPN, Ferreira AGM (2012) Quaternary phosphonium-based ionic liquids: thermal stability and heat capacity of the liquid phase. J Chem Thermodyn 45:16–27

    Article  CAS  Google Scholar 

  • Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654

    Article  CAS  Google Scholar 

  • Fukushima TAT (2007) Ionic liquids for soft functional materials with carbon nanotubes. Chem Eur J 13(18):5048–5058

    Article  CAS  Google Scholar 

  • Gan L, Shang SM, Yuen CWM, Jiang SX (2015a) Covalently functionalized graphene with d-glucose and its reinforcement to poly(vinyl alcohol) and poly(methyl methacrylate). RSC Adv 5(21):15954–5961

    Google Scholar 

  • Gan L, Shang SM, Yuen CWM, Jiang SX, Luo NM (2015b) Facile preparation of graphene nanoribbon filled silicone rubber nanocomposite with improved thermal and mechanical properties. Compos B Eng 69:237–242

    Google Scholar 

  • Gao GH, Cagin T, Goddard WA (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9(3):184–191

    Article  CAS  Google Scholar 

  • Gatos KG, Karger-Kocsis J (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104

    Article  CAS  Google Scholar 

  • Gatos KG, Sawanis NS, Apostolov AA et al (2004) Nanocomposite formation in hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites as a function of the intercalant type. Macromol Mater Eng 289:1079

    Google Scholar 

  • Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49(1):243–254

    Google Scholar 

  • Geethamma VG, Mathew KT, Lakshminarayanan R, Thomas S (1998) Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer 39(6–7):1483–1491

    Article  CAS  Google Scholar 

  • Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos A Appl Sci Manuf 36(11):1499–1506

    Article  CAS  Google Scholar 

  • Gent ANE (1992) How to design rubber components, Hanser (Chapters 1 and 8, in Engineering with Rubber)

    Google Scholar 

  • Goettler LA, Leib RI, Lambright AJ (1979) Short fiber reinforced hose—a newconcept in production and performance. Rubber Chem Technol 52:838–863

    Article  CAS  Google Scholar 

  • Goettler LA, Lee KY, Thakkar H (2007) Layered silicate reinforced polymer nanocomposites: development and applications. Polym Rev 47(2):291–317

    Article  CAS  Google Scholar 

  • Griffini G, Suriano R, Turri S (2012) Correlating mechanical and electrical properties of filler-loaded polyurethane fluoroelastomers: the influence of carbon black. Polym Eng Sci 52:2543–2551

    Google Scholar 

  • Guo Z, Park S, Hahn HT et al (2007) Magnetic and electromagnetic evaluation of the iron nanoparticle filled polyurethane nanocomposites. J Appl Physiol 101:09M511-09M511-3

    Google Scholar 

  • Guo B, Liu X, Zhou W, Lei Y, Jia D (2010) Adsorption of ionic liquid onto halloysite nanotubes: mechanism and reinforcement of the modified clay to rubber. J Macromol Sci Phys 49:1029–1043

    Article  CAS  Google Scholar 

  • Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619

    Article  CAS  Google Scholar 

  • Hamad WY (2013) Cellulosic materials: fibers, networks and composites. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Hamed GR (2000) Reinforcement of rubber. Rubber Chem Technol 73(3):524–533

    Article  CAS  Google Scholar 

  • Hashim AS, Kawabata N, Kohjiya S (1995) Silica reinforcement of epoxidized natural rubber by the sol-gel method. J. Sol-Gel Sci Technol 5:211–218

    Google Scholar 

  • Herd CR, McDonald GC, Hess WM (1992) Morphology of carbon-black aggregates: fractal versus euclidean geometry. Rubber Chem Technol 65:107–129

    Google Scholar 

  • Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Google Scholar 

  • Imam SH, Greene RV, Zaidi BR (1999) Biopolymers: utilizing nature’s advanced materials. American Chemical Society, Washington, DC

    Google Scholar 

  • Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3(2):269–273

    Article  CAS  Google Scholar 

  • Ismail H, Rosnah N, Ishiaku US (1997) Oil palm fibre-reinforced rubber composite: effects of concentration and modification of fibre surface. Polym Int 43:223–230

    Article  CAS  Google Scholar 

  • Jacob M, Varughese KT, Thomas S (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965

    Article  CAS  Google Scholar 

  • Jacob M, Francis B, Thomas S, Varughese K (2006) Dynamical mechanical analysis of sisal/oil palm hybrid fiber-reinforced natural rubber composites. Polym Compos 27(6):671–680

    Article  CAS  Google Scholar 

  • Jana RN, Cho JW (2008) Thermal stability and molecular interaction of polyurethane nanocomposites prepared by in situ polymerization with functionalized multiwalled carbon nanotubes. J Appl Polym Sci 108(5):2857–2864

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Joseph S, Joseph K, Thomas S (2006) Green composites from natural rubber and oil palm fiber: physical and mechanical properties. Int J Polym Mater 55:925–945

    Article  CAS  Google Scholar 

  • Karger-Kocsis J (2006) Dry friction and sliding behavior of organoclay reinforced thermoplastic polyurethane rubbers. Kautsch Gummi Kunstst 10:537–543

    Google Scholar 

  • Kato M, Tsukigase A, Tanaka H, Usuki A, Inai I (2006) Preparation and properties of isobutylene-isoprene rubber-clay nanocomposites. J Polym Sci A Polym Chem 44(3):1182–1188

    Article  CAS  Google Scholar 

  • Khan I, Kurnia KA, Mutelet F, Pinho SP, Coutinho JA (2014a) Probing the interactions between ionic liquids and water: experimental and quantum chemical approach. J Phys Chem B 118(7):1848–1860

    Article  CAS  Google Scholar 

  • Khan I, Kurnia KA, Sintra TE, Saraiva JA, Pinho SP, Coutinho JAP (2014b) Assessing the activity coefficients of water in cholinium-based ionic liquids: experimental measurements and COSMO-RS modeling. Fluid Phase Equilib 361:16–22

    Article  CAS  Google Scholar 

  • Khan I, Taha M, Ribeiro-Claro P, Pinho SP, Coutinho JAP (2014c) Effect of the cation on the interactions between alkyl methyl imidazolium chloride ionic liquids and water. J Phys Chem B 118(35):10503–10514

    Article  CAS  Google Scholar 

  • Khan I, Batista ML, Carvalho PJ, Santos LM, Gomes JR, Coutinho JA (2015) Vapor-liquid equilibria of imidazolium ionic liquids with cyano containing anions with water and ethanol. J Phys Chem B 119(32):10287–10303

    Article  CAS  Google Scholar 

  • Khan I, Taha M, Pinho SP, Coutinho JAP (2016a) Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: measurements and COSMO-RS modelling. Fluid Phase Equilib 414:93–100

    Article  CAS  Google Scholar 

  • Khan I, Umapathi R, Neves MC, Coutinho JA, Venkatesu P (2016b) Structural insights into the effect of cholinium-based ionic liquids on the critical micellization temperature of aqueous triblock copolymers. Phys Chem Chem Phys 18(12):8342–8351

    Article  CAS  Google Scholar 

  • Kim TAKHS, Lee SS, Park M (2012) Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 50:444–449

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Klockmann O, Hasse A (2007) A new rubber silane for future requirements—lower rolling resistance; lower VOCs. Kautsch Gummi Kunstst 3:82–84

    Google Scholar 

  • Klyosov AA (2007) Wood-plastic composites. Wiley, Hoboken

    Google Scholar 

  • Koerner H, Liu WD, Alexander M, Mirau P, Dowty H, Vaia RA (2005) Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46(12):4405–4420

    Article  CAS  Google Scholar 

  • Kreyenschulte H, Richter S, Gotze T, Fischer D, Steinhauser D, Kluppel M et al (2012) Interaction of 1-allyl-3-methyl-imidazolium chloride and carbon black and its influence on carbon black filled rubbers. Carbon 50:3649–3658

    Article  CAS  Google Scholar 

  • Kurian T, De PP, Khastgir D, Tripathy DK, De SK, Peiffer DG (1995) Reinforcement of EPDM-based ionic thermoplastic elastomer by carbon black. Polymer 36:3875–3884

    Article  CAS  Google Scholar 

  • Lalli JH, Claus RO, Hill AB et al (2005) Commercial applications of metal rubber. Proc SPIE Int Soc Opt Eng 5762:1–7

    Google Scholar 

  • Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2013) Effect of imidazolium ionic liquid type on the properties of nitrile rubber composites. Polym Int 62:1575–1582

    CAS  Google Scholar 

  • Laskowska A, Marzec A, Boiteux G, Zaborski M, Gain O, Serghei A (2014a) Investigations of nitrile rubber composites containing imidazolium ionic liquids. Macromol Symp 341:18–25

    Google Scholar 

  • Le HH, Hoang XT, Das A, Gohs U, Heinrich G, Stockelhuber KW et al (2012) Kinetics of filler wetting and dispersion in carbon nanotube/rubber composites. Carbon 50:4543–4556

    Article  CAS  Google Scholar 

  • Lei YD, Tang ZH, Guo BC, Zhu LX, Jia DM (2010) Synthesis of novel functional liquid and its application as a modifier in SBR/silica composites. Express Polym Lett 4:692–703

    Google Scholar 

  • Lei YTZ, Zhu L, Guo B, Jia D (2011) Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites. Polymer 52:1337–1344

    Article  CAS  Google Scholar 

  • Lei Y, Tang ZH, Zhu LX, Guo BC, Jia DM (2012) Thiol-containing ionic liquid for the modification of styrene–butadiene rubber/silica composites. J Appl Polym Sci 123:1252–1260

    Article  CAS  Google Scholar 

  • Leys J, Wübbenhorst M, Menon CP, Rajesh R, Thoen J, Glorieux C (2008) Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J Chem Phys 128:064509

    Article  CAS  Google Scholar 

  • Li C (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7:421–427

    Article  CAS  Google Scholar 

  • Likozar B (2011) The effect of ionic liquid type on the properties of hydrogenated nitrile elastomer/hydroxy-functionalized multi-walled carbon nanotube/ionic liquid composites. Soft Matter 7(3):970–977

    Article  CAS  Google Scholar 

  • Likozar B, Major Z (2010) Morphology, mechanical, crosslinking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: the effect of acrylonitrile content and hydrogenation. Appl Surf Sci 257:565–5673

    Article  CAS  Google Scholar 

  • Liu S, Liu W, Liu Y, Lin JH, Zhou X, Janik MJ et al (2010) Influence of imidazolium-based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polym Int 59:321–328

    Article  CAS  Google Scholar 

  • López-Manchado M, Biagiotti J, Valentini L, Kenny J (2004) Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber. J Appl Polym Sci 92(5):3394–3400

    Article  CAS  Google Scholar 

  • Lu Gan SS, Jiang S (2016) Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos B 84:294–300

    Article  CAS  Google Scholar 

  • Lu H, Yao Y, Huang WM, Hui D (2014) Noncovalently functionalized carbon fiber by grafted self-assembled graphene oxide and the synergistic effect on polymeric shape memory nanocomposites. Compos B Eng 67:290–295

    Article  CAS  Google Scholar 

  • Lukich LT (1998) Use of fullerene carbon in curable rubber compounds. US Patent 5750615, to Goodyear Tire and Rubber Co

    Google Scholar 

  • Lv R, Xu W, Na B, Chen B (2008) Insight into the role of filler network in the viscoelasticity of a carbon black filled thermoplastic elastomer: a strain dependent electrical conductivity study. J Macromol Sci B 47:774–782

    Article  CAS  Google Scholar 

  • Madani M, Basta AH, El-Sayed Abdo A, El-Saied H (2004) Utilization of waste paper in the manufacture of natural rubber composite for radiation shielding. Prog Rubber Plast Recycl Technol 20(4):287–310

    CAS  Google Scholar 

  • Maiti M, Sadhu S, Bhowmick AK (2004) Brominated poly(isobutylene-co-paramethylstyrene) (BIMS)-clay nanocomposites: synthesis and characterization. J Polym Sci B Polym Phys 42:4489–4502

    Article  CAS  Google Scholar 

  • Marwanta E, Mizumo T, Nakamura N, Ohno H (2005) Improved ionic conductivity of nitrile rubber/ionic liquid composites. Polymer 46:3795–3800

    Article  CAS  Google Scholar 

  • Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014a) The impact of imidazolium ionic liquids on the properties of nitrile rubber composites. Eur Polym J 53:139–146

    Google Scholar 

  • Marzec A, Laskowska A, Boiteux G, Zaborski M, Gain O, Serghei A (2014b) Study on weather aging of nitrile rubber composites containing imidazolium ionic liquids. Macromol Symp 342:25–34

    Google Scholar 

  • Mathew L, Joseph KU, Joseph R (2004) Isora fibres and their composites with natural rubber. Progress in rubber. Plast Recycl Technol 20:337–349

    CAS  Google Scholar 

  • Meier JG, Klüppel M (2008) Carbon black networking in elastomers monitored by dynamic mechanical and dielectric spectroscopy. Macromol Mater Eng 93:12–38

    Article  CAS  Google Scholar 

  • Miran Beigi AA, Abdouss M, Yousefi M, Pourmortazavi SM, Vahid A (2013) Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3-methylimidazolium methylsulfate). J Mol Liq 177:361–368

    Article  CAS  Google Scholar 

  • Murthy VM, De SK (1982) Effect of particulate fillers on short jute fiber-reinforced natural rubber composites. J Appl Polym Sci 27:4611

    Google Scholar 

  • Myers AW (2007) Antimicrobial nanocomposites for plastics and coatings. SPX Leadership Technology Forum, Charlotte, N.C., 15 November

    Google Scholar 

  • Myers A, Cook R, Kreutzer C et al (2008) Rocks in the road: nanoparticle design for improved tire performance. Report on SBIR Project, US Department of Energy

    Google Scholar 

  • Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 6:638–639

    Article  Google Scholar 

  • Nassar MM, Ashour EA, Wahid SS (1996) Thermal characteristics of bagasse. J Appl Polym Sci 61(6):885–890

    Article  CAS  Google Scholar 

  • Nayeem SM, Nyamathulla S, Khan I, Rao DK (2016) Investigation of molecular interactions in binary mixture (benzyl benzoate + ethyl acetate) at T = (308.15, 313.15, and 318.15) K: an insight from ultrasonic speed of sound and density. J Mol Liq 218:676–685

    Article  CAS  Google Scholar 

  • Niska KO, Sain M (2008) Wood-polymer composites. Elsevier, Cambridge

    Google Scholar 

  • Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306

    Article  CAS  Google Scholar 

  • Ou YC, Yu ZZ, Vidal A, Donnet JB (1996) Effects of alkylation of silicas on interfacial interaction and molecular motions between silicas and rubbers. J Appl Polym Sci 59:1321–1325

    Article  CAS  Google Scholar 

  • Park KY, Lee SE, Kim CG, Han JH (2006) Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol 66(3–4):576–584

    Article  CAS  Google Scholar 

  • Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904

    Google Scholar 

  • Passos H, Khan I, Mutelet F, Oliveira MB, Carvalho PJ, Santos LMNBF, Held C, Sadowski G, Freire MG, Coutinho JAP (2014) Vapor-liquid equilibria of water plus alkylimidazolium-based ionic liquids: measurements and perturbed-chain statistical associating fluid theory modeling. Ind Eng Chem Res 53(9):3737–3748

    Article  CAS  Google Scholar 

  • Paul J, Sindhu S, Nurmawati MH, Valiyaveettil S (2006) Mechanics of prestressed polydimethylsiloxane-carbon nanotube composite. Appl Phys Lett 89(18):184101

    Article  CAS  Google Scholar 

  • Pernak J, Czepukowicz A, Prozniak R (2001) New ionic liquids and their antielectrostatic properties. Ind Eng Chem Res 40:2379–2383

    Google Scholar 

  • Pernak J, Walkiewicz F, Maciejewska M, Zaborski M (2010) Ionic liquids as vulcanization accelerators. Ind Eng Chem Res 49:5012–5017

    Article  CAS  Google Scholar 

  • Piegat A, El Fray M, Jawad H et al (2008) Inhibition of calcification of polymer-ceramic composites incorporating nanocrystalline TiO2. Adv Appl Ceram 107(5):287–292

    Article  CAS  Google Scholar 

  • Pringle JM, Golding J, Forsyth CM, Deacon GB, Forsyth M, MacFarlane DR (2002) Physical trends and structural features in organic salts of the thiocyanate anion. J Mater Chem 12:3475–3480

    Article  CAS  Google Scholar 

  • Przybyszewska M, Zaborski M (2010) Effect of ionic liquids and surfactants on zinc oxide nanoparticle activity in crosslinking of acrylonitrile butadiene elastomer. J Appl Polym Sci 116:155–164

    Article  CAS  Google Scholar 

  • Rippel MM, Paula Leite CA, Galembeck, F (2002) Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy. Anal Chem 74:2541–2546

    Google Scholar 

  • Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773

    Google Scholar 

  • Sahoo BP, Naskar K, Tripathy DK (2011) Electrical properties of ethylene acrylic elastomer (AEM) loaded with conducting carbon black. AIP Conf Proc 1349:190–191

    Article  CAS  Google Scholar 

  • Scott MP, Rahman M, Brazil VS (2003) Application of ionic liquids as low-volatility plasticizers for PMMA. Eur Polym J 39:1947

    Google Scholar 

  • Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4(3):459–464

    Article  CAS  Google Scholar 

  • Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym Eng Sci 47:1956–1974

    Article  CAS  Google Scholar 

  • Shaffer MS, Sandler JK (2006) Carbon nanotube/nanofibre polymer composites. World Scientific, New York, pp 1–59

    Google Scholar 

  • Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67(9):1813–1822

    Article  CAS  Google Scholar 

  • Sherif Araby QM, Zhang L, Zaman I, Majewski P, Ma J (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001–1120023

    Article  CAS  Google Scholar 

  • Sowmiah S, Srinivasadesikan V, Tseng MC, Chu YC (2009) On the chemical stabilities of ionic liquids. Molecules 14:3780–3813

    Article  CAS  Google Scholar 

  • Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821

    Article  CAS  Google Scholar 

  • Srinivasa Reddy M, Khan I, Raju KTSS, Suresh P, Hari Babu B (2016) The study of molecular interactions in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate + 1-pentanol from density, speed of sound and refractive index measurements. J Chem Thermodyn 98:298–308

    Article  CAS  Google Scholar 

  • Steinhauser D, Subramaniam K, Das A, Heinrich G, Kluppel M (2012) Influence of ionic liquids on the dielectric relaxation behavior of CNT based elastomer nanocomposites. Express Polym Lett 11:927

    Google Scholar 

  • Stephen R, Varghese S, Joseph K et al (2006) Diffusion and transport through nanocomposites of natural rubber (NR), carboxylated styrene butadiene rubber (XSBR) and their blends. J Membr Sci 282:162–170

    Article  CAS  Google Scholar 

  • Subramaniam K, Das A, Heinrich G (2011) Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos Sci Technol 71(11):1441–1449

    Article  CAS  Google Scholar 

  • Subramaniam K, Das A, Heinrich G (2013) Improved oxidation resistance of conducting polychloroprene composites. Compos Sci Technol 74:14–19

    Google Scholar 

  • Sui G, Zhong W, Yang X, Zhao S (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026

    Article  CAS  Google Scholar 

  • Sullivan MJ, Ladd DA (2006) Golf ball containing graphite nanosheets in a polymeric network. US Patent 715756 issued on 11 April, to Acushnet Co

    Google Scholar 

  • Taha M, Khan I, Coutinho JA (2016a) Complexation and molecular modeling studies of europium(III)-gallic acid-amino acid complexes. J Inorg Biochem 157:25–33

    Article  CAS  Google Scholar 

  • Taha M, Khan I, Coutinho JAP (2016b) Coordination abilities of Good’s buffer ionic liquids toward europium(III) ion in aqueous solution. J Chem Thermodyn 94:152–159

    Article  CAS  Google Scholar 

  • Takahashi S, Goldberg HA, Feeney CA et al (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093

    Article  CAS  Google Scholar 

  • Thakur V, Singha A, Thakur M (2011) Green composites from natural cellulosic fibers. LAP Lambert Academic, Saarbrücken

    Google Scholar 

  • Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial–ionic liquid hybrids. Carbon 50(12):4303–4334

    Article  CAS  Google Scholar 

  • Uchida T, Kumar S (2005) Single wall carbon nanotube dispersion and exfoliation in polymers. J Appl Polym Sci 98(3):985–989

    Article  CAS  Google Scholar 

  • Usuki A, Tukigase A, Kato M (2002) Preparation and properties of EPDM-clay hybrids. Polymer 43:2185–2189

    Article  CAS  Google Scholar 

  • Vajrasthira C, Amornsakchai T, Bualek-Limcharoen S (2003) Fiber–matrix interactions in aramid-short-fiber-reinforced thermoplastic polyurethane composites. J Appl Polym Sci 87(7):1059–1067

    Article  CAS  Google Scholar 

  • Varghese S, Kuriakose B, Thomas S (1994) Stress-relaxation in short sisal-fiber-reinforced natural-rubber composites. J Appl Polym Sci 53(8):1051–1060

    Article  CAS  Google Scholar 

  • Vila J, Franjo C, Pico JM, Varela LM, Cabeza O (2007) Temperature behavior of the electrical conductivity of emim-based ionic liquids in liquid and solid states. Port Electrochim Acta 25:163–172

    Google Scholar 

  • Wang M, Kutsovsky Y, Reznek SR, Mahmud K (2002) Elastomeric compounds with improved wet skid resistance and methods to improve wet skid resistance. US Patent 6469089, to Cabot Corp

    Google Scholar 

  • Wang JD, Zhu YF, Zhou XW, Sui G, Liang J (2006) Preparation and mechanical properties of natural rubber powder modified by carbon nanotubes. J Appl Polym Sci 100(6):4697–4702

    Article  CAS  Google Scholar 

  • Wang X, Hu Y, Song L et al (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222–4227

    Article  CAS  Google Scholar 

  • Wang J, Jia H, Tang YY (2013) Enhancements of the mechanical properties and thermal conductivity of carboxylated acrylonitrile butadiene rubber with the addition of graphene oxide. J Mater Sci 48(4):1571–1577

    Article  CAS  Google Scholar 

  • Wu L, Qu P, Zhou R (2015) Green synthesis of reduced graphene oxide and its reinforcing effect on natural rubber composites. High Perform Polym 27(4):486–496

    Article  CAS  Google Scholar 

  • Xiong J, Liu Y, Yang X, Wang X (2004) Thermal and mechanical properties of polyurethane/montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86:549

    Google Scholar 

  • Yadav M, Rhee KY, Park SJ, Hui D (2014) Mechanical properties of Fe3O4/GO/chitosan composites. Compos B Eng 66:89–96

    Article  CAS  Google Scholar 

  • Yan F, Zhang X, Liu F, Li X, Zhang Z (2015) Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica. Compos B Eng 75:47–52

    Article  CAS  Google Scholar 

  • Yang J, Tian M, Jia Q-X et al (2007) Improved mechanical and functional properties of elastomer/graphite nanocomposites. Acta Mater 55:6372–6382

    Article  CAS  Google Scholar 

  • Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1(8):2719–2743

    Article  CAS  Google Scholar 

  • Yingyan Mao SW, Chen Y, Zhang F, Panine P, Chan TW, Zhang L, Liang Y, Liu L (2013) High performance graphene oxide based rubber composites. Sci Rep 3:1–7

    Google Scholar 

  • Yulian Bai HC, Qiu X, Zheng XFJ (2015) Effects of graphene reduction degree on thermal oxidative stability of reduced graphene oxide/silicone rubber nanocomposites. High Perform Polym 27(8):997–1006

    Article  CAS  Google Scholar 

  • Zhao Q, Tannenbaum R, Jacob KJ (2006) Carbon nanotubes as Raman sensors of vulcanization in natural rubber. Carbon 44(9):1740–1745

    Article  CAS  Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author’s are thankful to their respective universities for providing internet facilities for collecting the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, I., Usmani, M.A., Bhat, A.H., Rather, J.A., Hassan, S.I., Mumam, A. (2017). Recent Progress on Rubber Based Biocomposites: From Carbon Nanotubes to Ionic Liquids. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics