Abstract
In this article we will construct the most general torsion-free parity-invariant covariant theory of gravity that is free from ghost-like and tachyonic instabilities around constant curvature space-times in four dimensions. Specifically, this includes the Minkowski, de Sitter and anti-de Sitter backgrounds. We will first argue in details how starting from a general covariant action for the metric one arrives at an “equivalent” action that at most contains terms that are quadratic in curvatures but nevertheless is sufficient for the purpose of studying stability of the original action. We will then briefly discuss how such a “quadratic curvature action” can be decomposed in a covariant formalism into separate sectors involving the tensor, vector and scalar modes of the metric tensor; most of the details of the analysis however, will be presented in an accompanying paper. We will find that only the transverse and trace-less spin-2 graviton with its two helicity states and possibly a spin-0 Brans-Dicke type scalar degree of freedom are left to propagate in 4 dimensions. This will also enable us to arrive at the consistency conditions required to make the theory perturbatively stable around constant curvature backgrounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Finite higher derivative theories suffer from Ostrogradsky instabilities, see Ref. [23]. However, the Ostrogradsky argument relies on having a highest “momentum” associated with the highest derivative in the theory, in which the energy comes as a linear term, as opposed to quadratic. In a classical theory this would lead to instability and in a quantum theory, this would yield ghosts or extra poles in the propagator. A classic example is Stelle’s 4th derivative theory of gravity [24], which has been argued to be UV finite, but contains massive spin-2 ghost, therefore shows vacuum instabilities.
- 2.
- 3.
Although, Brans and Dicke formulated their theory by adding a new nonminimally coupled scalar field, as is well known, this scalar degree of freedom can be incorporated within the metric degrees of freedom by replacing \(R\rightarrow F(R)\) in the gravitational action [38]. This is the approach that naturally emerges in our analysis.
References
M.J.G. Veltman, Quantum theory of gravitation. Conf. Proc. C 7507281, 265 (1975)
B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160, 1113 (1967). B.S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory. Phys. Rev. 162, 1195 (1967). B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory. Phys. Rev. 162, 1239 (1967)
B.S. DeWitt, G. Esposito, An introduction to quantum gravity. Int. J. Geom. Meth. Mod. Phys. 5, 101 (2008), arXiv:0711.2445 [hep-th]
J. Polchinski, String Theory: Superstring Theory and Beyond, vol. 2 (Cambridge, UK: Univ. Pr 1998) , p. 531
A. Ashtekar, Introduction to loop quantum gravity and cosmology. Lect. Notes Phys. 863, 31 (2013)
J. Henson, in The Causal Set Approach to Quantum Gravity, ed. by D. Oriti, Approaches to Quantum Gravity, pp. 393–413, arXiv:gr-qc/0601121 (for a review)
S. Weinberg, in Ultraviolet Divergences in Quantum Theories of Gravitation. eds. by S.W. Hawking (Cambridge Univ. (UK)); W. Israel (Alberta Univ., Edmonton (Canada). Theoretical Physics Inst.), pp. 790–831; ISBN 0 521 22285 0; 1979; pp. 790–831; University Press; Cambridge
E. Witten, Noncommutative geometry and string field theory. Nucl. Phys. B 268, 253 (1986)
A. Smailagic, E. Spallucci, Lorentz invariance, unitarity in UV-finite of QFT on noncommutative spacetime. J. Phys. A 37, 1 (2004) [Erratum-ibid. A 37, 7169 (2004)] arXiv:hep-th/0406174
P.G.O. Freund, M. Olson, Nonarchimedean strings. Phys. Lett. B 199, 186 (1987). P.G.O. Freund, E. Witten, Adelic string amplitudes. Phys. Lett. B 199, 191 (1987). L. Brekke, P.G.O. Freund, M. Olson, E. Witten, Nonarchimedean string dynamics. Nucl. Phys. B 302, 365 (1988). P.H. Frampton, Y. Okada, Effective scalar field theory of \(P^-\)adic string. Phys. Rev. D 37, 3077 (1988)
B. Dragovich, Zeta strings, arXiv:hep-th/0703008
M.R. Douglas, S.H. Shenker, Strings in less than one-dimension. Nucl. Phys. B 335, 635 (1990). D.J. Gross, A.A. Migdal, Nonperturbative solution of the ising model on a random surface. Phys. Rev. Lett. 64, 717 (1990). E. Brezin, V.A. Kazakov, Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144 (1990). D. Ghoshal, p-adic string theories provide lattice discretization to the ordinary string worldsheet. Phys. Rev. Lett. 97, 151601 (2006)
T. Biswas, M. Grisaru, W. Siegel, Linear regge trajectories from worldsheet lattice parton field theory. Nucl. Phys. B 708, 317 (2005), arXiv:hep-th/0409089
W. Siegel, Introduction to string field theory, arXiv:hep-th/0107094
W. Siegel, Stringy gravity at short distances, arXiv:hep-th/0309093
A.A. Tseytlin, On singularities of spherically symmetric backgrounds in string theory. Phys. Lett. B 363, 223 (1995), arXiv:hep-th/9509050
T. Biswas, A. Mazumdar, W. Siegel, Bouncing universes in string-inspired gravity. JCAP 0603, 009 (2006), arXiv:hep-th/0508194
E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity. Phys. Lett. B 97, 77 (1980). E.T. Tomboulis, in Renormalization and Asymptotic Freedom in Quantum Gravity, ed. by S.M. Christensen. Quantum Theory of Gravity, pp. 251–266 and Preprint - TOMBOULIS, E.T. (REC.MAR.83) p. 27. E.T. Tomboulis, Superrenormalizable gauge and gravitational theories, arXiv:hep-th/9702146. E. T. Tomboulis, arXiv:1507.00981 [hep-th]
L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86, 044005 (2012), arXiv:1107.2403 [hep-th]
A.O. Barvinsky, Y.V. Gusev, New representation of the nonlocal ghost-free gravity theory, arXiv:1209.3062 [hep-th]. A.O. Barvinsky, aspects of nonlocality in quantum field theory, quantum gravity and cosmology, arXiv:1209.3062 [hep-th]
J.W. Moffat, Ultraviolet complete quantum gravity. Eur. Phys. J. Plus 126, 43 (2011), arXiv:1008.2482 [gr-qc]
K. Krasnov, Renormalizable non-metric quantum gravity? arXiv:hep-th/0611182. K. Krasnov, Non-metric gravity i: field equations. Class. Quant. Grav. 25, 025001 (2008), arXiv:gr-qc/0703002
D.A. Eliezer, R.P. Woodard, Nucl. Phys. B 325, 389 (1989)
K.S. Stelle, Renormalization of higher derivative quantum gravity. Phys. Rev. D 16, 953 (1977)
T. Biswas, E. Gerwick, T. Koivisto, A. Mazumdar, Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012), arXiv:1110.5249 [gr-qc]
T. Biswas, T. Koivisto, A. Mazumdar, Nonlocal theories of gravity: the flat space propagator, arXiv:1302.0532 [gr-qc]
S. Talaganis, T. Biswas, A. Mazumdar, Class. Quant. Grav. 32(21), 215017 (2015). doi:10.1088/0264-9381/32/21/215017, arXiv:1412.3467 [hep-th]
T. Biswas, T. Koivisto, A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity. JCAP 1011, 008 (2010), arXiv:1005.0590 [hep-th]
T. Biswas, A.S. Koshelev, A. Mazumdar, S.Y. Vernov, Stable bounce and inflation in non-local higher derivative cosmology. JCAP 1208, 024 (2012), arXiv:1206.6374 [astro-ph.CO]
V.P. Frolov, A. Zelnikov, T. de Paula Netto, JHEP 1506, 107 (2015). doi:10.1007/JHEP06(2015)107, arXiv:1504.00412 [hep-th]. V.P. Frolov, Phys. Rev. Lett. 115(5), 051102 (2015). doi:10.1103/PhysRevLett.115.051102, arXiv:1505.00492 [hep-th]. V.P. Frolov, A. Zelnikov, arXiv:1509.03336 [hep-th]
T. Biswas, A. Conroy, A.S. Koshelev, A. Mazumdar, Class. Quant. Grav. 31, 015022 (2014) [Class. Quant. Grav. 31, 159501 (2014)]. doi:10.1088/0264-9381/31/1/015022, 10.1088/0264-9381/31/15/159501, arXiv:1308.2319 [hep-th]
T. Biswas, S. Talaganis, Mod. Phys. Lett. A 30, no. 03n04, 1540009 (2015). doi:10.1142/S021773231540009X, arXiv:1412.4256 [gr-qc]
T. Biswas, A. Mazumdar, Class. Quant. Grav. 31, 025019 (2014). doi:10.1088/0264-9381/31/2/025019, arXiv:1304.3648 [hep-th]
D. Chialva, A. Mazumdar, Mod. Phys. Lett. A 30, no. 03n04, 1540008 (2015). doi:10.1142/S0217732315400088, arXiv:1405.0513 [hep-th]
B. Craps, T. De Jonckheere, A.S. Koshelev, Cosmological perturbations in non-local higher-derivative gravity, arXiv:1407.4982 [hep-th]
A. Conroy, A. Mazumdar, A. Teimouri, Phys. Rev. Lett. 114(20), 201101 (2015). doi:10.1103/PhysRevLett.114.201101, arXiv:1503.05568 [hep-th]. A. Conroy, A. Mazumdar, S. Talaganis, A. Teimouri, arXiv:1509.01247 [hep-th]
T. Biswas, A.S. Koshelev, A. Mazumdar, Analysis of stability of gravitational theories around (anti-)deSitter backgrounds, (in preparation)
G. Magnano, L.M. Sokolowski, Phys. Rev. D 50, 5039 (1994). doi:10.1103/PhysRevD.50.5039, arXiv:gr-qc/9312008
R.P. Woodard, Nonlocal Models of Cosmic Acceleration. Found. Phys. (2014) 44(2), 213–233 (2014). doi:10.1007/s10701-014-9780-6 e-Print: arXiv:1401.0254 [astro-ph.CO]
T. Chiba, JCAP 0503, 008 (2005), arXiv:gr-qc/0502070
A. Nunez, S. Solganik, Phys. Lett. B 608, 189–193 (2005), arXiv:hep-th/0411102
B. Allen, Phys. Rev. D 34, 3670 (1986). doi:10.1103/PhysRevD.34.3670. P.J. Mora, N.C. Tsamis, R.P. Woodard, J. Math. Phys. 53, 122502 (2012). doi:10.1063/1.4764882, arXiv:1205.4468 [gr-qc]
E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis, L. Rastelli, Nucl. Phys. B 562, 330 (1999). doi:10.1016/S0550-3213(99)00524-6, arXiv:hep-th/9902042
A.A. Starobinsky, Phys. Lett. B 91, 99 (1980). doi:10.1016/0370-2693(80)90670-X
T. Biswas, J.A.R. Cembranos, J.I. Kapusta, JHEP 1010, 048 (2010), arXiv:1005.0430 [hep-th]
T. Biswas, J. Kapusta, A. Reddy, JHEP 1212, 008 (2012), arXiv:1201.1580 [hep-th]
Acknowledgments
We would like to thank Spyridon Talaganis for discussions. TB would like to thank Carl for his insightful comments on the general subject matter of IDG theories. AM is supported by the STFC grant ST/J000418/1. AK is supported by the FCT Portugal fellowship SFRH/BPD/105212/2014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Biswas, T., Koshelev, A.S., Mazumdar, A. (2016). Gravitational Theories with Stable (anti-)de Sitter Backgrounds. In: Asselmeyer-Maluga, T. (eds) At the Frontier of Spacetime. Fundamental Theories of Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-31299-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-31299-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31297-2
Online ISBN: 978-3-319-31299-6
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)