[go: up one dir, main page]

Skip to main content

Dynamic Set Intersection

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

  • 1874 Accesses

Abstract

Consider the problem of maintaining a family F of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given \(S,S'\in F\), report every member of \(S\cap S'\) in any order. We show that in the word RAM model, where w is the word size, given a cap d on the maximum size of any set, we can support set intersection queries in \(O(\frac{d}{w/\log ^2 w})\) expected time, and updates in O(1) expected time. Using this algorithm we can list all t triangles of a graph \(G=(V,E)\) in \(O(m+\frac{m\alpha }{w/\log ^2 w} +t)\) expected time, where \(m=|E|\) and \(\alpha \) is the arboricity of G. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in \(O(m \alpha )\) time.

We provide an incremental data structure on F that supports intersection witness queries, where we only need to find one \(e\in S\cap S'\). Both queries and insertions take \(O\left( {\sqrt{\frac{N}{w/\log ^2 w}}}\right) \) expected time, where \(N=\sum _{S\in F} |S|\). Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using M words of space, each update costs \(O(\sqrt{M \log N})\) expected time, each reporting query costs \(O(\frac{N\sqrt{\log N}}{\sqrt{M}}\sqrt{op+1})\) expected time where op is the size of the output, and each witness query costs \(O(\frac{N\sqrt{\log N}}{\sqrt{M}} + \log N)\) expected time.

A more detailed version of this paper appears in [1]. Supported by NSF grants CCF-1217338 and CNS-1318294 and a grant from the US-Israel Binational Science Foundation. This research was performed in part at the Center for Massive Data Algorithmics (MADALGO) at Aarhus University, which is supported by the Danish National Research Foundation grant DNRF84.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kopelowitz, T., Pettie, S., Porat, E.: Dynamic set intersection (2014). CoRR abs/1407.6755v2

    Google Scholar 

  2. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Myers, G.: A Four Russians algorithm for regular expression pattern matching. J. ACM 39(2), 432–448 (1992)

    Article  Google Scholar 

  4. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39(5), 2075–2089 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in \(o(mn)\) time. ACM Transactions on Algorithms 8(4), 34 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chan, T.M.: All-pairs shortest paths with real weights in \(o(n^3/\log n)\) time. Algorithmica 50(2), 236–243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchin, K., Buchin, M., Meulemans, W., Mulzer, W.: Four soviets walk the dog - with an application to Alt’s conjecture. In: Proceedings 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1399–1413 (2014)

    Google Scholar 

  8. Baran, I., Demaine, E.D., Pǎtraşcu, M.: Subquadratic algorithms for 3SUM. Algorithmica 50(4), 584–596 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grønlund, A., Pettie, S.: Threesomes, degenerates, and love triangles. In: Proceedings 55th IEEE Symposium on Foundations of Computer Science (FOCS) (2014). Full manuscript available as arXiv:1404.0799

  10. Chan, T.M.: The art of shaving logs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, p. 231. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings 42nd ACM Symposium on Theory of Computing (STOC), pp. 603–610 (2010)

    Google Scholar 

  12. Kopelowitz, T., Pettie, S., Porat, E.: 3sum hardness in (dynamic) data structures (2014). CoRR abs/1407.6756

    Google Scholar 

  13. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions, and differences. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 743–752 (2000)

    Google Scholar 

  14. Barbay, J., Kenyon, C.: Adaptive intersection and t-threshold problems. In: Proceedings 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 390–399 (2002)

    Google Scholar 

  15. Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahinalp, S.C., Muthukrishnan, S., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 400–408. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Bille, P., Pagh, A., Pagh, R.: Fast evaluation of union-intersection expressions. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 739–750. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor. Comput. Sci. 411(40–42), 3795–3800 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J. Comput. 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Björklund, A., Pagh, R., Williams, V.V., Zwick, U.: Listing triangles. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 223–234. Springer, Heidelberg (2014)

    Google Scholar 

  21. Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writing. Inf. Comput. 136(1), 25–51 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brodnik, A., Miltersen, P.B., Munro, J.I.: Trans-dichotomous algorithms without multiplication—some upper and lower bounds. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 426–439. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvi Kopelowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kopelowitz, T., Pettie, S., Porat, E. (2015). Dynamic Set Intersection. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics