Abstract
The aim of the following study was to examine the influence of image resolution in the pattern recognition in the grey scale images. In order to recognise the pattern, the authors used the method based on moment invariants which were the elements of feature vectors defining the features of the recognised object. The paper presents the influence of image resolution for exemplary images on both: the values of moment invariants and distances between feature vectors. The authors have paid a great attention to the fact that these distances are significant for distinguishing given object classes. One can conclude from the results that for a significant decrease in resolution there occur problems in pattern recognition. It results from the influence of image resolution on the value of moment invariants and at the same time on the value of the distance between the feature vectors defining the recognised objects. In this way, the paper shows that in order to recognise objects correctly, it is necessary to retain some necessary minimum resolution. It is indispensable despite the fact that we usually aim at decreasing the amount of processed data which is on the hand crucial because of short processing times in many practical applications. It is therefore essential because of the fact that we need to guarantee short times of image processing in many practical applications. Moreover, this study presents the examples of the algorithms in use.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bibik, P., Gradolewski, S., Zawislak, W., Zbudniewek, J., Darakchiev, R., Krczel, J., Michalski, M., Strzelczyk, K.: Problems of detecting unauthorized satellite transmissions from the VSAT terminals. In: Communications and Information Systems Conference (MCC), 2012 Military, pp. 1–4. ISBN: 978-1-4673-1422-0, 8–9 Oct 2012
Bibik, P., Narkiewicz, J.: Helicopter optimal control after power failure using comprehensive dynamic model. J. Guid. Control Dyn. 35, 1354–1362 (2012)
Bibik, P., Narkiewicz, J.: Helicopter modeling and optimal control in autorotation. Ann. Proc. Am. Helicopter Soc. 64(2), 986 (2008)
Bieda, R., Grygiel, R.: Wyznaczanie Orientacji Obiektu w Przestrzeni z Wykorzystaniem Naiwnego Filtru Kalmana. Przeglad Elektrotechniczny 90, 34–41 (2014)
Daniec, K., Jedrasiak, K., Koteras, R., Nawrat, A.: Embedded micro inertial navigation system. Appl. Mech. Mater. 249, 1234–1246 (2013)
Babiarz, A., Bieda, R., Jaskot, K.: Vision system for group of mobile robots, vision based systems for UAV applications. Stud. Comput. Intell. 481, 139–156 (2013). ISBN: 978-3-319-00368-9
Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., Nawrat, A.: Real-time laser point tracking. Comput. Vision Graph. 8671, 542–551 (2014). (Lecture Notes in Computer Science)
Nawrat, A., Jedrasiak, K.: Fast colour recognition algorithm for robotics, Problemy Eksploatacji, pp. 69–76 (2008)
D. Davies, P.L. Palmer, M. Mirmehdi: Detection and tracking of very small low contrast objects. In: Proceedings of the 9th British Machine Vision Conference (1998)
Zhang, S., Karim, M.A.: Automatic target tracking for video annotation. Op. Eng. 43, 1867–1873 (2004)
Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP: Graph Models Image Process. 53, 231–239 (1991)
Chesnaud, C., Refegier, P., Boulet, V.: Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Patt. Anal. Mach. Intell. 21, 1145–1157 (1999)
Gordon, N., Ristic, B., Arulampalam, S.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House, Boston (2004)
Sharp, C., Shakernia, O., Sastry, S.: A vision system for landing an unmanned aerial vehicle. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1720–1727. IEEE, Los Alamitos (2001)
Casbeer, D., Li, S., Beard, R., Mehra, R., McLain, T.: Forest Fire Monitoring With Multiple Small UAVs, Porland, OR (2005)
Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn. McGraw-Hill, New York (1991)
Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Thompson, Boston (2008)
Danahy, E.E., Agaian, S.S., Panetta, K.A.: Algorithms for the resizing of binary and grayscale images using a logical transform. In: Proceedings SPIE 6497, Image Processing: Algorithms and Systems V, 64970Z (February 27, 2007). doi:10.1117/12.704477 (2007)
Xiao, J., Zou, X., Liu, Z., Guo, X.: Adaptive interpolation algorithm for real-time image resizing. In: Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC’06), IEEE (2006)
Suresh, C., Singh, S., Saini, R., Saini, A.K.: I.J. Image, Graphics and Signal Processing, 5, 55–62. Published Online April 2013 in MECS (http://www.mecs-press.org/) A Comparative Analysis of Image Scaling Algorithms (2013)
Jedrasiak, K., Nawrat, A., Daniec, K., Koteras, R., Mikulski, M., Grzejszczak, T.: A prototype device for concealed weapon detection using IR and CMOS cameras fast image fusion. Comput. Vision Graph. 7594, 423–432 (2012). (Lecture Notes in Computer Science)
Jedrasiak, K., Bereska, D., Nawrat, A.: The prototype of gyro-stabilized UAV gimbal for day-night surveillance. Adv. Technol. Intell. Syst. Nat. Border Secur. 440, 107–115 (2013). (Studies in Computational Intelligence)
Galuszka, A., Bereska, D., Simek, K., Skrzypczyk, K., Daniec, K.: Wykorzystanie Elementów Teorii Grafów w Systemie Analiz Kryminalnych. Przeglad Elektrotechniczny 86, 278–283 (2010)
Bereska, D., Daniec, K., Fras, S., Jedrasiak, K., Malinowski, M., Nawrat, A.: System for multi-axial mechanical stabilization of digital camera, vision based systems for UAV applications. Stud. Comput. Intell. 481, 117–189 (2013). ISBN: 978-3-319-00368-9
Bereska, D., Daniec, K., Jedrasiak, K., Nawrat, A.: Gyro-stabilized platform for multispectral image acquisition, vision based systems for UAV applications. Stud. Comput. Intell. 481, 115–121 (2013). ISBN: 978-3-319-00368-9
Sroka, M., Sciegienka, P., Babiarz, A., Jaskot, K.: Prototyp bezzalogowego pojazdu podwodnego—uklad stabilizacji i utrzymania zadanego kursu. Przeglad Elektrotechniczny 89, 205–217 (2013)
Jaskot, K., Babiarz, A., Sroka, M., Sciegienka, P.: Prototyp bezzalogowego pojazdu podwodnego—konstrukcja mechaniczna, panel operatora. Przeglad Elektrotechniczny 89, 52–67 (2013)
Nawrat, A., Jedrasiak, K.: SETh system spatio-temporal object tracking using combined color and motion features. In: Chen, S., (ed.) Proceedings of WSEAS international conference on mathematics and computers in science and engineering, no. 9. World Scientific and Engineering Academy and Society (2009)
Jedrasiak, K., Andrzejczak, M., Nawrat, A.: SETh: the method for long-term object tracking. Comput. Vis. Graph. 8671, 302–315 (2014). (Lecture Notes in Computer Science)
Babiarz, A., Bieda, R., Jedrasiak, K., Nawrat, A.: Machine vision in autonomous systems of detection and location of objects in digital images, vision based systems for UAV applications. Stud. Comput. Intell. 481, 3–25 (2013). ISBN: 978-3-319-00368-9
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kuś, Z., Nawrat, A. (2016). Minimizing the Image Resolution in Order to Increase the Computing Speed Without Losing the Separation of the Recognised Patterns. In: Nawrat, A., Jędrasiak, K. (eds) Innovative Simulation Systems. Studies in Systems, Decision and Control, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-21118-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-21118-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21117-6
Online ISBN: 978-3-319-21118-3
eBook Packages: EngineeringEngineering (R0)