[go: up one dir, main page]

Skip to main content

HybridFL: Hybrid Approach Toward Privacy-Preserving Federated Learning

  • Conference paper
  • First Online:
Security and Privacy in New Computing Environments (SPNCE 2023)

Abstract

In this study, we introduce a novel Hybrid Federated Learning (HybridFL) approach aimed at enhancing privacy and accuracy in collaborative machine learning scenarios. Our methodology integrates Differential Privacy (DP) and secret sharing techniques to address inference risks during training and protect against information leakage in the output model. Drawing inspiration from recent advances, we present a HybridFL framework that combines the strengths of Homomorphic Encryption (HE) and Multi-Party Computation (MPC) to achieve secure computation without the computational overhead of pure HE methods. Our contributions include a privacy-preserving design for Federated Learning (FL) that ensures local data privacy through secret sharing while leveraging DP mechanisms for noise addition. The system offers resilience against unreliable participants and is evaluated using various machine learning models, including Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), and linear regression. Furthermore, we address potential external threats by deploying predictive model outputs as robust services against inference attacks. Experimental results demonstrate improved accuracy and convergence speed, establishing the viability of HybridFL as an effective solution for collaborative machine learning with enhanced privacy guarantees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Google Scholar 

  2. Shao, Z.C.: A new efficient (t, n) verifiable multi-secret sharing (vmss) based on ych scheme. Appl. Math. Comput. 168(1), 135–140 (2005)

    Google Scholar 

  3. Bai, L.: A strong ramp secret sharing scheme using matrix projection. In: Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks, pp. 652–656. IEEE Computer Society (2006)

    Google Scholar 

  4. Iftene, S.: General secret sharing based on the chinese remainder theorem with applications in e-voting. Elec. Notes Theor. Comput. Sci. 186, 67–84 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Conference on Artificial Intelligence and Statistics (2017)

    Google Scholar 

  6. Li, T., Sahu, A.K., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: Federated optimization for heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  7. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: Proceedings Of SDM 2004, SIAM, vol. 4, pp. 222–233 (2004)

    Google Scholar 

  8. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Proceedings of NIPS 2009, pp. 289– 296 (2009)

    Google Scholar 

  9. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed kmeans clustering over arbitrarily partitioned data. In: Proceedinds of KDD 2005, pp. 593–599. ACM (2005)

    Google Scholar 

  10. “Deep learning and differential privacy (2016).” https://github.com/frankmcsherry/blog/blob/master/posts/2017-10-27.md

  11. Biggio, B., Fumera, G., Roli, F.: Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 36(4), 984–996, April 2014

    Google Scholar 

  12. Wikipedia, Cryptography. https://en.wikipedia.org/wiki/Cryptography. Accessed 02 Aug 2020

  13. Li, M., Andersen, D.G., Park, J,W., et al.: Scaling distributed machine learning with the parameter server. In: 11th USENIX Symposium on O, perating Systems Design and Implementation (OSDI 14), pp. 583–598 (2014). https://doi.org/10.1145/2640087.2644155

  14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  15. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  16. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically partitioned data. In: Ng, W.K., Kitsuregawa, M., Li, J., Chang, K. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol. 3918. Springer, Heidelberg (2006). https://doi.org/10.1007/11731139_74

  17. Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf. Syst. 14(2), 161–178 (2008). https://doi.org/10.1007/s10115-007-0073-7

    Article  MATH  Google Scholar 

  18. Lindell, Y., Pinkas, B.: Privacy-preserving data mining. In: Annual International Cryptology Conference, pp. 36–54. Springer, Heidelberg (2000). https://doi.org/10.1145/335191.335438

  19. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 222–233 (2004). https://doi.org/10.1137/1.9781611972740.21

  20. Sanil, A.P., Karr, A.F., Lin, X., et al.: Privacy-preserving regression modelling via distributed computation. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 677–682. ACM (2004). https://doi.org/10.1145/1014052.1014139

  21. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 593–599. ACM ( 2005). https://doi.org/10.1145/1081870.1081942

  22. Ali Sheraz, et al.: Towards privacy-preserving deep learning: opportunities and challenges. In: 2020 IEEE 7th International Conference on Data Science and Advance Analalytics

    Google Scholar 

  23. Riazi, M.S., Weinert, C., Tkachenko, O., et al.: Chameleon: a hybrid secure computation framework for machine learning applications. In: Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pp. 707–721. ACM (2018). https://doi.org/10.1145/3196494.3196522

  24. Xu, R., et al.: Hybridalpha: an efficient approach for privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security (2019)

    Google Scholar 

  25. Nikolaenko, V., Ioannidis, S., Weinsberg, U., et al.: Privacy-preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 801–812. ACM (2013). https://doi.org/10.1145/2508859.2516751

  26. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017). https://doi.org/10.1109/SP.2017.12

  27. Gilad-Bachrach, R., Dowlin, N., Laine, K., et al.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

    Google Scholar 

  28. Proserpio, D., Goldberg, S., McSherry, F.: Calibrating data to sensitivity in private data analysis: a platform for differentially-private analysis of weighted datasets. Proc. VLDB 2014 7(8), 637–648 (2014)

    Google Scholar 

  29. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  30. Bonawitz, K., Ivanov, V., Kreuter, B., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191. ACM (2017). https://doi.org/10.1145/3133956.3133982

  31. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of CCS 2015, pp. 1310–1321. ACM (2015)

    Google Scholar 

  32. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of CCS 2015, pp. 1322–1333. ACM (2015)

    Google Scholar 

  33. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: Gazelle: a low latency framework for secure neural network inference, arXiv preprint arXiv:1801.05507

  34. “Deep learning and differential privacy,” https://github.com/ frankmcsherry/blog/blob/master/posts/2017–10–27.md, 2016

  35. Biggio, B., Fumera, G., Roli, F.: ‘Security evaluation of pattern classifiers under attack.’ IEEE Trans. Knowl. Data Eng. 36(4), 984–996 (2014)

    Article  MATH  Google Scholar 

  36. Wikipedia, Cryptography. https://en.wikipedia.org/wiki/Cryptography. Accessed 02 Aug 2020

  37. Techtarget,cryptography. https://searchsecurity.techtarget.com/definition/cryptography. Accessed 02 Aug 2020

  38. Gibson, A., Patterson, J.: Chapter 4. Major Architectures of Deep Networks. O’Reilly. https://www.oreilly.com/library/view/deeplearning/9781491924570/ch04.html

  39. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for neural network training. In: Proceedings on Privacy Enhancing Technologies, vol. 1, p. 24 (2019). https://doi.org/10.2478/popets-2019-0035

  40. Konen, J., McMahan, H.B., Yu, F.X., et al.: Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  41. Even, H., Goldreich, O., Lempel, A.: A randomized proto-col for signing contracts. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds). CRYPTO 1982, pp. 205–210. Plenum Press, New York (1982). (Page 4)

    Google Scholar 

  42. Yao, A.C.-C.: How to generate and exchange secrets (extendedabstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986. (Page 4)

    Google Scholar 

  43. Beaver, D., Micali, S., Rogaway, P.: The round complexity ofsecure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990. (Pages 4 and 9)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (62472252, 62172258), TaiShan Scholars Program (tsqn202211280), Shandong Provincial Natural Science Foundation (ZR2024QF131, ZR2023LZH014, ZR2022ZD01, ZR2022MF264, ZR2021LZH007), Shandong Provincial Key R&D Program of China (2021SFGC0401, 2021CXGC010103), Department of Science & Technology of Shandong Province (SYS202201), and Quan Cheng Laboratory (QCLZD202302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, S., Mamoon, S., Usman, A., Abidin, Z.u., Zhao, C. (2025). HybridFL: Hybrid Approach Toward Privacy-Preserving Federated Learning. In: Cai, J., Zhou, Z., Chen, K. (eds) Security and Privacy in New Computing Environments. SPNCE 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 525. Springer, Cham. https://doi.org/10.1007/978-3-031-73699-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73699-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73698-8

  • Online ISBN: 978-3-031-73699-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics