[go: up one dir, main page]

Skip to main content

Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14950))

  • 725 Accesses

Abstract

One of the most promising use-cases for machine learning in industrial manufacturing is the early detection of defective products using a quality control system. Such a system can save costs and reduces human errors due to the monotonous nature of visual inspections. Today, a rich body of research exists which employs machine learning methods to identify rare defective products in unbalanced visual quality control datasets. These methods typically rely on two components: A visual backbone to capture the features of the input image and an anomaly detection algorithm that decides if these features are within an expected distribution. With the rise of transformer architecture as visual backbones of choice, there exists now a great variety of different combinations of these two components, ranging all along the trade-off between detection quality and inference time. Facing this variety, practitioners in the field often have to spend a considerable amount of time on researching the right combination for their use-case at hand. Our contribution is to help practitioners with this choice by reviewing and evaluating current vision transformer models together with anomaly detection methods. For this, we chose SotA models of both disciplines, combine and evaluate them towards the goal of having small, fast and efficient anomaly detection models suitable for industrial manufacturing. We evaluate the results on the well-known MVTecAD and BTAD datasets and propose considerations for using a quality control system in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardizzone, L., et al.: Framework for Easily Invertible Architectures (FrEIA) (2022). https://github.com/vislearn/FrEIA

  2. Bae, J., Lee, J.H., Kim, S.: Image anomaly detection and localization with position and neighborhood information. https://arxiv.org/pdf/2211.12634v2.pdf

  3. Bergmann, P., Batzner, K., Fauser, M., Sattlegger, D., Steger, C.: The MVTEC anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection. Int. J. Comput. Vision 129(4), 1038–1059 (2021). https://doi.org/10.1007/s11263-020-01400-4

    Article  Google Scholar 

  4. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4182–4191 (2020). https://doi.org/10.1109/CVPR42600.2020.00424

  5. Bishop, C.: Mixture density networks. Workingpaper, Aston University (1994)

    Google Scholar 

  6. Choi, B., Jeong, J.: VIV-ANO: anomaly detection and localization combining vision transformer and variational autoencoder in the manufacturing process. Electronics 11(15), 2306 (2022). https://doi.org/10.3390/electronics11152306

    Article  Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. https://arxiv.org/pdf/1605.08803

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. https://arxiv.org/pdf/2010.11929

  10. Fan, Y., Wen, G., Li, D., Qiu, S., Levine, M.D., Xiao, F.: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. Comput. Vision Image Underst.195 (2020). https://doi.org/10.1016/j.cviu.2020.102920

  11. Gudovskiy, D., Ishizaka, S., Kozuka, K.: Cflow-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows. https://arxiv.org/pdf/2107.12571

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. https://arxiv.org/pdf/1512.03385

  13. Hyun, J., Kim, S., Jeon, G., Kim, S.H., Bae, K., Kang, B.J.: Reconpatch: contrastive patch representation learning for industrial anomaly detection. http://arxiv.org/pdf/2305.16713

  14. Kim, Y., Jang, H., Lee, D., Choi, H.J.: Altub: alternating training method to update base distribution of normalizing flow for anomaly detection. https://arxiv.org/pdf/2210.14913v1.pdf

  15. Lei, J., Hu, X., Wang, Y., Liu, D.: Pyramidflow: high-resolution defect contrastive localization using pyramid normalizing flow. https://arxiv.org/pdf/2303.02595v1.pdf

  16. Li, C., et al.: Efficient self-supervised vision transformers for representation learning. https://arxiv.org/pdf/2106.09785.pdf

  17. Li, H., Wu, J., Chen, H., Wang, M., Shen, C.: Efficient anomaly detection with budget annotation using semi-supervised residual transformer. http://arxiv.org/pdf/2306.03492

  18. Li, Y., et al.: Efficientformer: Vision transformers at mobilenet speed. arXiv preprint arXiv:2206.01191 (2022)

  19. Liu, Z., et al.: SWIN transformer: hierarchical vision transformer using shifted windows. https://arxiv.org/pdf/2103.14030

  20. Mathian, E., Liu, H., Fernandez-Cuesta, L., Samaras, D., Foll, M., Chen, L.: Haloae: an halonet based local transformer auto-encoder for anomaly detection and localization. https://arxiv.org/pdf/2208.03486.pdf

  21. Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer network for image anomaly detection and localization. In: 30th IEEE/IES International Symposium on Industrial Electronics (ISIE) (2021)

    Google Scholar 

  22. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. https://arxiv.org/pdf/2106.08265v2.pdf

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019). https://arxiv.org/pdf/1801.04381

  24. Tao, X., Gong, X., Zhang, X., Yan, S., Adak, C.: Deep learning for unsupervised anomaly localization in industrial images: a survey. IEEE Trans. Instrum. Meas. 71, 1–21 (2022). https://doi.org/10.1109/TIM.2022.3196436

    Article  Google Scholar 

  25. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. https://arxiv.org/pdf/2012.12877

  26. Vaswani, A., Ramachandran, P., Srinivas, A., Parmar, N., Hechtman, B., Shlens, J.: Scaling local self-attention for parameter efficient visual backbones. https://arxiv.org/pdf/2103.12731

  27. Wang, T., Chen, Y., Qiao, M., Snoussi, H.: A fast and robust convolutional neural network-based defect detection model in product quality control. Int. J. Adv. Manuf. Technol. 94(9–12), 3465–3471 (2018). https://doi.org/10.1007/s00170-017-0882-0

    Article  Google Scholar 

  28. Wang, W., et al.: PVT V2: improved baselines with pyramid vision transformer. Comput. Visual Media 8(3), 415–424 (2022). https://doi.org/10.1007/s41095-022-0274-8

    Article  Google Scholar 

  29. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers. http://arxiv.org/pdf/2105.15203.pdf

  30. You, Z., Yang, K., Luo, W., Cui, L., Le, X., Zheng, Y.: ADTR: anomaly detection transformer with feature reconstruction. https://arxiv.org/pdf/2209.01816.pdf

  31. Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2D normalizing flows. https://arxiv.org/pdf/2111.07677

  32. Zhang, K., Wang, B., Kuo, C.C.J.: PedeNet: image anomaly localization via patch embedding and density estimation. Pattern Recogn. Lett. 153, 144–150 (2022). https://doi.org/10.1016/j.patrec.2021.11.030

    Article  Google Scholar 

  33. Zhang, Z., Zhang, H., Zhao, L., Chen, T., Arik, S.O., Pfister, T.: Nested hierarchical transformer: towards accurate, data-efficient and interpretable visual understanding. https://arxiv.org/pdf/2105.12723.pdf

  34. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=BJJLHbb0-

Download references

Acknowledgements

Christoph Hönes has received funding from SAP SE. Christoph Hönes and Miriam Alber were employed by esentri AG who also provided computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Alber .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5794 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alber, M., Hönes, C., Baier, P. (2024). Evaluating Vision Transformer Models for Visual Quality Control in Industrial Manufacturing. In: Bifet, A., Krilavičius, T., Miliou, I., Nowaczyk, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14950. Springer, Cham. https://doi.org/10.1007/978-3-031-70381-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70381-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70380-5

  • Online ISBN: 978-3-031-70381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics