[go: up one dir, main page]

Skip to main content

Brief Introduction to Unmanned Aerial Systems

  • Chapter
  • First Online:
Applying Drones to Current Societal and Industrial Challenges

Abstract

People have gotten used to seeing what is generally known as a drone in many aspects of life in the last two decades. Present in a great variety of events, it is now considered as a key asset for security, industry, sports, or as a hobby. However, the idea of a manned or unmanned aircraft is quite older than the public might think. Although the television industry brought the operations of Unmanned Aerial Vehicles (UAVs) during the First Gulf War in the early 1990s to screens, the remote-controlled and autonomous aerial vehicles date to several years and run parallel to the history of aviation. This introduction reviews the path that Unmanned Aerial Systems (UASs) have undergone throughout the years, from the very early and simple pioneers to the latest developments, with many applications in different areas of life. A clear distinction between the numerous terms is also delved to provide an overview of the several elements that comprise a whole aircraft system, and all companion systems that make the mission possible. Finally, this chapter provides a classification of these aerial systems, specifically focusing on their structure, and how they fly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fan, B., Li, Y., Zhang, R., & Fu, Q. (2020). Review on the technological development and application of UAV systems. Chinese Journal of Electronics, 29(2), 199–207.

    Article  Google Scholar 

  2. Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.

    Article  Google Scholar 

  3. Greenwood, W. W., Lynch, J. P., & Zekkos, D. (2019). Applications of UAVs in civil infrastructure. Journal of Infrastructure Systems, 25(2), 04019002.

    Article  Google Scholar 

  4. Bassi, E. (2019). European drones regulation: Today’s legal challenges. In 2019 international conference on unmanned aircraft systems (ICUAS) (pp. 443–450). IEEE.

    Google Scholar 

  5. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459.

    Article  Google Scholar 

  6. Bone, E., & Bolkcom, C. (2003). Unmanned aerial vehicles: Background and issues for congress. Congressional Research Service, Library of Congress.

    Google Scholar 

  7. Dalamagkidis, K., Valavanis, K. P., Piegl, L. A., Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2012). Aviation history and unmanned flight. On Integrating Unmanned Aircraft Systems into the National Airspace System: Issues, Challenges, Operational Restrictions, Certification, and Recommendations, 11–42.

    Google Scholar 

  8. Burridge, B. (2003). UAVs and the dawn of post-modern warfare: A perspective on recent operations. The RUSI Journal, 148(5), 18–23.

    Article  Google Scholar 

  9. Cook, K. L. (2007). The silent force multiplier: The history and role of UAVs in warfare. In 2007 IEEE Aerospace Conference (pp. 1–7). IEEE.

    Google Scholar 

  10. Finn, R. L., & Wright, D. (2012). Unmanned aircraft systems: Surveillance, ethics and privacy in civil applications. Computer Law & Security Review, 28(2), 184–194.

    Article  Google Scholar 

  11. Li, X., & Savkin, A. V. (2021). Networked unmanned aerial vehicles for surveillance and monitoring: A survey. Future Internet, 13(7), 174.

    Article  Google Scholar 

  12. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., ... & Guizani, M. (2019). Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.

    Google Scholar 

  13. Saulnier, A., & Thompson, S. N. (2016). Police UAV use: Institutional realities and public perceptions. Policing: An International Journal of Police Strategies & Management, 39(4), 680–693.

    Google Scholar 

  14. Huttunen, M. (2017). Unmanned, remotely piloted, or something else? analysing the terminological dogfight. Air and Space Law, 42(3), 349–368.

    Google Scholar 

  15. Vachtsevanos, G., Tang, L., Drozeski, G., & Gutierrez, L. (2005). From mission planning to flight control of unmanned aerial vehicles: Strategies and implementation tools. Annual Reviews in Control, 29(1), 101–115.

    Article  Google Scholar 

  16. Atyabi, A., MahmoudZadeh, S., & Nefti-Meziani, S. (2018). Current advancements on autonomous mission planning and management systems: An AUV and UAV perspective. Annual Reviews in Control, 46, 196–215.

    Article  Google Scholar 

  17. Stecz, W., & Gromada, K. (2020). UAV mission planning with SAR application. Sensors, 20(4), 1080.

    Article  Google Scholar 

  18. Arnold, K. P. (2016). The uav ground control station: Types, components, safety, redundancy, and future applications. International Journal of Unmanned Systems Engineering, 4(1), 37–50.

    Google Scholar 

  19. Hong, Y., Fang, J., & Tao, Y. (2008). Ground control station development for autonomous UAV. In Intelligent Robotics and Applications: First International Conference, ICIRA 2008 Wuhan, China, October 15–17, 2008 Proceedings, Part II 1 (pp. 36–44). Springer, Berlin, Heidelberg.

    Google Scholar 

  20. Kang, Y., & Yuan, M. (2009). Software design for mini-type ground control station of UAV. In 2009 9th International Conference on Electronic Measurement & Instruments (pp. 4–737). IEEE.

    Google Scholar 

  21. Sadraey, M. H. (2017). Ground Control Station. Unmanned aircraft design: A review of fundamentals (pp. 141–156). Springer International Publishing.

    Chapter  Google Scholar 

  22. Torenbeek, E., & Wittenberg, H. (2009). History of aviation. Flight Physics: Essentials of Aeronautical Disciplines and Technology, with Historical Notes, 1–46.

    Google Scholar 

  23. Gillispie, C. C. (2014). The Montgolfier brothers and the invention of aviation 1783–1784: With a word on the importance of ballooning for the science of heat and the art of building railroads (Vol. 684). Princeton University Press.

    Google Scholar 

  24. Petrescu, R. V., Aversa, R., Apicella, A., Abu-Lebdeh, T., & Petrescu, F. I. (2017). Nikola Tesla. American Journal of Engineering and Applied Sciences, 10(4), 868–877.

    Google Scholar 

  25. Chant, C. (2002). A Century of Triumph: The History of Aviation. Simon and Schuster.

    Google Scholar 

  26. Lace, W. W. (2008). The Hindenburg disaster of 1937. Infobase Publishing.

    Google Scholar 

  27. Kotar, S. L., & Gessler, J. E. (2011). Ballooning: A History, 1782–1900. McFarland.

    Google Scholar 

  28. Mackenzie, D. (2010). ICAO: A history of the international civil aviation organization. University of Toronto Press.

    Google Scholar 

  29. Anderson, J. D. (2004). Inventing Flight: the Wright brothers & their predecessors. JHU Press.

    Google Scholar 

  30. Padfield, G. D., & Lawrence, B. (2003). The birth of flight control: An engineering analysis of the Wright brothers’ 1902 glider. The Aeronautical Journal, 107(1078), 697–718.

    Article  Google Scholar 

  31. Haulman, D. L. (2003). US unmanned aerial vehicles in combat, 1991–2003. Defense Technical Information Center.

    Google Scholar 

  32. Miličević, Z. M., & Bojković, Z. B. (2021). From the early days of unmanned aerial vehicles (UAVS) to their integration into wireless networks. Vojnotehnički glasnik/Military Technical Courier, 69(4), 941–962.

    Article  Google Scholar 

  33. Fahlstrom, P. G., Gleason, T. J., & Sadraey, M. H. (2022). Introduction to UAV systems. Wiley.

    Google Scholar 

  34. Evans, S. G., & Delaney, K. B. (2018). The V1 (Flying Bomb) attack on London (1944–1945); the applied geography of early cruise missile accuracy. Applied Geography, 99, 44–53.

    Article  Google Scholar 

  35. Sullivan, J. M. (2006). Evolution or revolution? The rise of UAVs. IEEE Technology and Society Magazine, 25(3), 43–49.

    Article  Google Scholar 

  36. Wolf, W. (2021). Off Target: America’s Guided Bombs, Missiles and Drones 1917–1950. Fonthill Media.

    Google Scholar 

  37. Mátyás, P., & Máté, N. (2019). Brief history of UAV development. Repüléstudományi Közlemények, 31(1), 155–166.

    Article  Google Scholar 

  38. Cai, G., Lum, K. Y., Chen, B. M., & Lee, T. H. (2010). A brief overview on miniature fixed-wing unmanned aerial vehicles. IEEE ICCA, 2010, 285–290.

    Google Scholar 

  39. Carrillo, L. R. G., López, A. E. D., Lozano, R., & Pégard, C. (2012). Quad rotorcraft control: Vision-based hovering and navigation. Springer Science & Business Media.

    Google Scholar 

  40. Gutiérrez, G., & Searcy, M. T. (2016). Introduction to the UAV special edition. The SAA Archaeological Record, Special Issue Drones in Archaeology, 16(2), 6–9.

    Google Scholar 

  41. Keane, J. F., & Carr, S. S. (2013). A brief history of early unmanned aircraft. Johns Hopkins APL Technical Digest, 32(3), 558–571.

    Google Scholar 

  42. Arthey, V. (2015). Abel: the true story of the spy they traded for Gary Powers. Biteback Publishing.

    Google Scholar 

  43. Ma’Oz, M. (1995). Syria and Israel: From War to Peacemaking: From War to Peacemaking. Clarendon Press.

    Google Scholar 

  44. Rabil, R. G. (2003). Embattled Neighbors: Syria, Israel, and Lebanon. Lynne Rienner Publishers.

    Google Scholar 

  45. Keegan, J. (2011). A history of warfare. Random House.

    Google Scholar 

  46. Allison, W. T. (2012). The Gulf War, 1990–91. Bloomsbury Publishing.

    Book  Google Scholar 

  47. Doty, R. M., Winter, D. G., Peterson, B. E., & Kemmelmeier, M. (1997). Authoritarianism and American students’ attitudes about the Gulf War, 1990–1996. Personality and Social Psychology Bulletin, 23(11), 1133–1143.

    Article  Google Scholar 

  48. PS, R., & Jeyan, M. L. (2020). Mini Unmanned Aerial Systems (UAV)-A Review of the Parameters for Classification of a Mini UAV. International Journal of Aviation, Aeronautics, and Aerospace, 7(3), 5.

    Google Scholar 

  49. Abatti, J. M. (2005). Small power: The role of micro and small UAVs in the future. AIR WAR COLL MAXWELL AFB AL Center For Strategy and Technology.

    Google Scholar 

  50. Nagel, A., Levy, D. E., & Shepshelovich, M. (2006). Conceptual aerodynamic evaluation of MINI/MICRO UAV. In 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 1261).

    Google Scholar 

  51. Wang, H., Cheng, H., & Hao, H. (2020). The use of unmanned aerial vehicle in military operations. In International Conference on Man-Machine-Environment System Engineering (pp. 939–945). Singapore: Springer Singapore.

    Google Scholar 

  52. Arjomandi, M., Agostino, S., Mammone, M., Nelson, M., & Zhou, T. (2006). Classification of unmanned aerial vehicles. Report for Mechanical Engineering class, University of Adelaide, Adelaide, Australia, 1–48.

    Google Scholar 

  53. Nalepka, J., & Hinchman, J. (2005). Automated aerial refueling: extending the effectiveness of UAVs. In AIAA modeling and simulation technologies conference and exhibit (p. 6005).

    Google Scholar 

  54. Aboumrad, A., Haun, J., McGinnis, A., & Wu, N. (2020). An automatic platform for landing and charging of UAVs to extend UAV operations. In 2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS) (pp. 343–347). IEEE.

    Google Scholar 

  55. Ladig, R., Paul, H., Miyazaki, R., & Shimonomura, K. (2021). Aerial manipulation using multirotor UAV: A review from the aspect of operating space and force. Journal of Robotics and Mechatronics, 33(2), 196–204.

    Article  Google Scholar 

  56. Gokbel, E., & Ersoy, S. (2021). Launchable rotary wing UAV designs and launch mechanism designs for rotary wing UAV. Journal of Mechatronics and Artificial Intelligence in Engineering, 2(2), 102–113.

    Article  Google Scholar 

  57. Cracknell, A. P. (2017). UAVs: Regulations and law enforcement. International Journal of Remote Sensing, 38(8–10), 3054–3067.

    Article  Google Scholar 

  58. Ibrahim, A. W. N., Ching, P. W., Seet, G. G., Lau, W. M., & Czajewski, W. (2010). Moving objects detection and tracking framework for UAV-based surveillance. In 2010 Fourth Pacific-Rim Symposium on Image and Video Technology (pp. 456–461). IEEE.

    Google Scholar 

  59. Mahmud, I., & Cho, Y. Z. (2018). Detection avoidance and priority-aware target tracking for UAV group reconnaissance operations. Journal of Intelligent & Robotic Systems, 92, 381–392.

    Article  Google Scholar 

  60. Anderson, J. (2011). EBOOK: Fundamentals of Aerodynamics (SI units). McGraw hill.

    Google Scholar 

  61. Johnson, W. (1986). Recent developments in rotary-wing aerodynamic theory. AIAA journal, 24(8), 1219–1244.

    Article  Google Scholar 

  62. Lee, C., Kim, S., & Chu, B. (2021). A survey: Flight mechanism and mechanical structure of the UAV. International Journal of Precision Engineering and Manufacturing, 22(4), 719–743.

    Article  Google Scholar 

  63. Kundu, A. K. (2010). Aircraft design (Vol. 27). Cambridge University Press.

    Google Scholar 

  64. Fielding, J. P. (2017). Introduction to aircraft design (Vol. 11). Cambridge University Press.

    Google Scholar 

  65. Rhodes, M. D., & Selberg, B. P. (1984). Benefits of dual wings over single wings for high-performance business airplanes. Journal of Aircraft, 21(2), 116–127.

    Article  Google Scholar 

  66. Hileman, J., Spakovszky, Z., Drela, M., & Sargeant, M. (2006). Aerodynamic and Aeroacoustic Three-Dimensional Design for a” Silent” Aircraft. In 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 241).

    Google Scholar 

  67. Guo, S. (2007). Aeroelastic optimization of an aerobatic aircraft wing structure. Aerospace science and Technology, 11(5), 396–404.

    Article  Google Scholar 

  68. Okonkwo, P., & Smith, H. (2016). Review of evolving trends in blended wing body aircraft design. Progress in Aerospace Sciences, 82, 1–23.

    Article  Google Scholar 

  69. Filippone, A. (2006). Flight performance of fixed and rotary wing aircraft. Elsevier.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Orgeira-Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orgeira-Crespo, P., García-Luis, U. (2024). Brief Introduction to Unmanned Aerial Systems. In: Carou, D., Sartal, A., Davim, J.P. (eds) Applying Drones to Current Societal and Industrial Challenges. Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-55571-8_1

Download citation

Publish with us

Policies and ethics