Abstract
This chapter presents a study on efficient object detection, segmentation, and recognition using the YOLO (You Only Look Once) model. The YOLOv3 algorithm is used for object detection and recognition, while contour segmentation is used for object segmentation. The study includes experiments on various images, and the results show that the proposed approach achieves high accuracy and speed in detecting and recognizing objects. The contour segmentation technique also provides precise segmentation of objects in the images. The study demonstrates the effectiveness of the YOLO model in object detection, segmentation, and recognition, and its potential for real-time applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A. Vahab, M.S. Naik, P.G. Raikar, S. Prasad, Applications of object detection system. IRJET 6(4), 4186–4192 (2019)
Y. Li, H. Wang, L.M. Dang, T.N. Nguyen, D. Han, A. Lee, I. Jang, H. Moon, A deep learning-based hybrid framework for object detection and recognition in autonomous driving. IEEE Access 8, 194228–194239 (2020). https://doi.org/10.1109/ACCESS.2020.3033289
R.B. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CoRR abs/1311.2524 (2013). arXiv:1311.2524
J. Redmon, S. K. Divvala, R. B. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, CoRR abs/1506.02640 (2015). arXiv:1506.02640
T. Diwan, G. Anirudh, J.V. Tembhurne, Object detection using yolo: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 82(6), 9243–9275 (2023). https://doi.org/10.1007/s11042-022-13644-y
S. Gothane, A practice for object detection using yolo algorithm. Int. J. Sci. Res. Comput. Sci. Eng Inf. Technol. 7(2), 268–272 (2021)
A. Morbekar, A. Parihar, R. Jadhav, Crop disease detection using yolo. INCET 2020, 1–5 (2020). https://doi.org/10.1109/INCET49848.2020.9153986
N. M. Krishna, R. Y. Reddy, M. S. C. Reddy, K. P. Madhav, G. Sudham, Object Detection and Tracking Using Yolo, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), 2021, pp. 1–7. https://doi.org/10.1109/ICIRCA51532.2021.9544598
Y. Kim, H. Bang, Introduction to kalman filter and its applications, in Introduction and Implementations of the Kalman Filter, IntechOpen, ed. by F. Govaers, (Rijeka, 2018., Ch. 2). https://doi.org/10.5772/intechopen.80600
A. Sonavane, R. Kohar, Dental cavity detection using yolo, in Proceedings of Data Analytics and Management, ed. by D. Gupta, Z. Polkowski, A. Khanna, S. Bhattacharyya, O. Castillo, (Springer, Singapore, 2022), pp. 141–152
R. Nagpal, S. Long, S. Jahagirdar, W. Liu, S. Fazackerley, R. Lawrence, A. Singh, An application of deep learning for sweet cherry phenotyping using yolo object detection (2023). https://doi.org/10.48550/ARXIV.2302.06698
S. Zhao, F. You, Vehicle detection based on improved yolov3 algorithm (2020) pp. 76–79. https://doi.org/10.1109/ICITBS49701.2020.00024
R. Latha, G. Sreekanth, R. Rajadevi, S. Nivetha, K. Kumar, V. Akash, S. Bhuvanesh, P. Anbarasu, Fruits and vegetables recognition using yolo. ICCCI 2022, 1–6 (2022). https://doi.org/10.1109/ICCCI54379.2022.9740820
A. Balmik, S. Barik, A. Nandy, A robust object recognition using modified yolov5 neural network, arXiv preprint arXiv:YYYY.MMDD (Mar 2023)
K. Saranya, S. Vijayashaarathi, C.S. Christel, R.N. Kumar, Object recognition using FPGA and TINY YOLO (AIP Conference Proceedings 2725 (1), 040002 (04 2023). arXiv. https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0125143/16783696/040002_1_online.pdf). https://doi.org/10.1063/5.0125143
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, P. Dollár, Microsoft coco: Common Objects in Context (2014). https://doi.org/10.48550/ARXIV.1405.0312
P.-L. Shui, W.-C. Zhang, Noise-robust edge detector combining isotropic and anisotropic Gaussian Kernels. Pattern Recogn. 45(2), 806–820 (2012). https://doi.org/10.1016/j.patcog.2011.07.020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sharma, A., Rautaray, S.S. (2024). Efficient Object Detection, Segmentation, and Recognition Using YOLO Model. In: Lin, F.M., Patel, A., Kesswani, N., Sambana, B. (eds) Accelerating Discoveries in Data Science and Artificial Intelligence I. ICDSAI 2023. Springer Proceedings in Mathematics & Statistics, vol 421. Springer, Cham. https://doi.org/10.1007/978-3-031-51167-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-51167-7_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-51166-0
Online ISBN: 978-3-031-51167-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)