Abstract
Almost all existing software for visualization of biomedical volumes provides three-dimensional (3D) rendering. The most common techniques for 3D rendering of volume data are maximum intensity projection (MIP) and direct volume rendering (DVR). Recently, rendering algorithms based on Monte-Carlo path tracing (MCPT) have also been considered. Depending on the algorithm, level of detail, volume size, and transfer function, rendering can be quite slow. In this paper, we present a simple and intuitive voxelization method for biomedical volume rendering optimization. The main advantage of the proposed method, besides the fast structure construction and traversal, is its straightforward application to MIP, DVR and MCPT rendering techniques (multi-target optimization). The same single structure (voxel grid) can be used for empty space skipping, optimized maximum intensity calculation and advanced Woodcock tracking. The performance improvement results suggest the use of the proposed method especially in cases where different rendering techniques are combined.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Behlouli, A., Visvikis, D., Bert, J.: Improved woodcock tracking on monte carlo simulations for medical applications. Phys. Med. Biol. 63(22), 225005 (2018)
Chao, Z., Xu, W.: A new general maximum intensity projection technology via the hybrid of u-net and radial basis function neural network. J. Digit. Imaging 34(5), 1264–1278 (2021)
Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: Gigavoxels: ray-guided streaming for efficient and detailed voxel rendering. In: Proceedings of the 2009 Symposium on Interactive 3D graphics and games, pp. 15–22 (2009)
Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann, E.: Interactive indirect illumination using voxel cone tracing. In: Computer Graphics Forum, vol. 30, pp. 1921–1930. Wiley Online Library (2011)
Deakin, L.J., Knackstedt, M.A.: Efficient ray casting of volumetric images using distance maps for empty space skipping. Comput. Visual Media 6, 53–63 (2020)
Hadwiger, M., Al-Awami, A.K., Beyer, J., Agus, M., Pfister, H.: SparseLeap: Efficient empty space skipping for large-scale volume rendering. IEEE Trans. Visual Comput. Graph. 24(1), 974–983 (2017)
Ize, T., Wald, I., Parker, S.G.: Ray tracing with the bsp tree. In: 2008 IEEE Symposium on Interactive Ray Tracing, pp. 159–166. IEEE (2008)
Kutaish, H., Acker, A., Drittenbass, L., Stern, R., Assal, M.: Computer-assisted surgery and navigation in foot and ankle: state of the art and fields of application. EFORT Open Rev. 6(7), 531 (2021)
LaMar, E., Hamann, B., Joy, K.I.: Multiresolution Techniques for Interactive Texture-Based Volume Visualization. IEEE (1999)
Mroz, L., König, A., Gröller, E.: Real-time maximum intensity projection. In: Data Visualization’99: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization in Vienna, Austria, May 26–28, 1999, pp. 135–144. Springer (1999)
Mroz, L., König, A., Gröller, E.: Maximum intensity projection at warp speed. Comput. Graph. 24(3), 343–352 (2000)
Pachowsky, M.L., et al.: Cinematic rendering in rheumatic diseases—photorealistic depiction of pathologies improves disease understanding for patients. Front. Med. 9 (2022)
Sariali, E., Mauprivez, R., Khiami, F., Pascal-Mousselard, H., Catonné, Y.: Accuracy of the preoperative planning for cementless total hip arthroplasty. a randomised comparison between three-dimensional computerised planning and conventional templating. Orthopaed. Traumatol. Surg. Res. 98(2), 151–158 (2012)
Szirmay-Kalos, L., Tóth, B., Magdics, M.: Free path sampling in high resolution inhomogeneous participating media. In: Computer Graphics Forum, vol. 30, pp. 85–97. Wiley Online Library (2011)
Wang, C., et al.: Patient-specific instrument-assisted minimally invasive internal fixation of calcaneal fracture for rapid and accurate execution of a preoperative plan: a retrospective study. BMC Musculoskelet. Disord. 21, 1–11 (2020)
Woodcock, E., Murphy, T., Hemmings, P., Longworth, S.: Techniques used in the gem code for monte carlo neutronics calculations in reactors and other systems of complex geometry. In: Proc. Conf. Applications of Computing Methods to Reactor Problems, vol. 557. Argonne National Laboratory (1965)
Zellmann, S.: Comparing hierarchical data structures for sparse volume rendering with empty space skipping (2019). arXiv preprint arXiv:1912.09596
Zhou, S.: Woodcock tracking based fast Monte Carlo direct volume rendering method. J. Syst. Simul. 29(5), 1125 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Denisova, E., Manetti, L., Bocchi, L., Iadanza, E. (2024). Voxelization: Multi-target Optimization for Biomedical Volume Rendering. In: Badnjević, A., Gurbeta Pokvić, L. (eds) MEDICON’23 and CMBEBIH’23. MEDICON CMBEBIH 2023 2023. IFMBE Proceedings, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-031-49062-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-49062-0_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-49061-3
Online ISBN: 978-3-031-49062-0
eBook Packages: EngineeringEngineering (R0)