[go: up one dir, main page]

Skip to main content

Representable and Diagonally Representable Weakening Relation Algebras

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMiCS 2023)

Abstract

A binary relation defined on a poset is a weakening relation if the partial order acts as a both-sided compositional identity. This is motivated by the weakening rule in sequent calculi and closely related to models of relevance logic. For a fixed poset the collection of weakening relations is a subreduct of the full relation algebra on the underlying set of the poset. We present a two-player game for the class of representable weakening relation algebras akin to that for the class of representable relation algebras. This enables us to define classes of abstract weakening relation algebras that approximate the quasivariety of representable weakening relation algebras. We give explicit finite axiomatisations for some of these classes. We define the class of diagonally representable weakening relation algebras and prove that it is a discriminator variety. We also provide explicit representations for several small weakening relation algebras.

This work was supported by the Engineering and Physical Sciences Research Council EP/S021566/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bimbó, K., Dunn, J.M., Maddux, R.D.: Relevance logics and relation algebras. Rev. Symb. Log. 2(1), 102–131 (2009). https://doi.org/10.1017/S1755020309090145

    Article  MathSciNet  MATH  Google Scholar 

  2. Galatos, N., Jipsen, P.: Distributive residuated frames and generalized bunched implication algebras. Algebra Univers. 78(3), 303–336 (2017). https://doi.org/10.1007/s00012-017-0456-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Galatos, N., Jipsen, P.: The structure of generalized BI-algebras and weakening relation algebras. Algebra Univers. 81(3), 1–35 (2020). https://doi.org/10.1007/s00012-020-00663-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Galatos, N., Jipsen, P.: Weakening relation algebras and FL\(^2\)-algebras. In: Fahrenberg, U., Jipsen, P., Winter, M. (eds.) RAMiCS 2020. LNCS, vol. 12062, pp. 117–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43520-2_8

    Chapter  MATH  Google Scholar 

  5. Givant, S.: Advanced Topics in Relation Algebras, vol. 2. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65945-9

    Book  MATH  Google Scholar 

  6. Givant, S.: Introduction to Relation Algebras, vol. 1. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-65235-1

    Book  MATH  Google Scholar 

  7. Hirsch, R.: Relation algebras of intervals. Artif. Intell. 83(2), 267–295 (1996). https://doi.org/10.1016/0004-3702(95)00042-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  9. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched implication algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS, vol. 10226, pp. 144–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57418-9_9

    Chapter  MATH  Google Scholar 

  10. Kurz, A., Velebil, J.: Relation lifting, a survey. J. Log. Algebraic Methods Program. 85(4), 475–499 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maddux, R.: Relation Algebras, vol. 13. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  12. Maddux, R.: Some varieties containing relation algebras. Trans. Amer. Math. Soc. 272(2), 501–526 (1982). https://doi.org/10.2307/1998710

    Article  MathSciNet  MATH  Google Scholar 

  13. Maddux, R.: A sequent calculus for relation algebras. Ann. Pure Appl. Log. 25(1), 73–101 (1983). https://doi.org/10.1016/0168-0072(83)90055-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Maddux, R.D.: Relevance logic and the calculus of relations. Rev. Symb. Log. 3(1), 41–70 (2010). https://doi.org/10.1017/S1755020309990293

    Article  MathSciNet  MATH  Google Scholar 

  15. Maddux, R.D.: Tarskian classical relevant logic. In: Düntsch, I., Mares, E. (eds.) Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. OCL, vol. 22, pp. 67–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-71430-7_3

    Chapter  Google Scholar 

  16. McCune, W.: Prover9 and Mace4 (2005–2010). www.cs.unm.edu/ mccune/prover9/

  17. Monk, D.: On representable relation algebras. Michigan Math. J. 11, 207–210 (1964). projecteuclid.org/euclid.mmj/1028999131

  18. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74. IEEE (2002)

    Google Scholar 

  19. Smyth, M.: Stable compactification i. J. Lond. Math. Soc. 2(2), 321–340 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stell, J.G.: Relations on hypergraphs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33314-9_22

    Chapter  Google Scholar 

  21. Stell, J.G.: Symmetric Heyting relation algebras with applications to hypergraphs. J. Log. Algebr. Methods Program. 84(3), 440–455 (2015). https://doi.org/10.1016/j.jlamp.2014.12.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Tarski, A.: Contributions to the theory of models. J. Symb. Log. 21(4) (1956)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaš Šemrl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jipsen, P., Šemrl, J. (2023). Representable and Diagonally Representable Weakening Relation Algebras. In: Glück, R., Santocanale, L., Winter, M. (eds) Relational and Algebraic Methods in Computer Science. RAMiCS 2023. Lecture Notes in Computer Science, vol 13896. Springer, Cham. https://doi.org/10.1007/978-3-031-28083-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28083-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28082-5

  • Online ISBN: 978-3-031-28083-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics