Abstract
Monocular depth estimation is an essential task in the computer vision community. While tremendous successful methods have obtained excellent results, most of them are computationally expensive and not applicable for real-time on-device inference. In this paper, we aim to address more practical applications of monocular depth estimation, where the solution should consider not only the precision but also the inference time on mobile devices. To this end, we first develop an end-to-end learning-based model with a tiny weight size (1.4MB) and a short inference time (27FPS on Raspberry Pi 4). Then, we propose a simple yet effective data augmentation strategy, called R\(^{2}\) crop, to boost the model performance. Moreover, we observe that the simple lightweight model trained with only one single loss term will suffer from performance bottleneck. To alleviate this issue, we adopt multiple loss terms to provide sufficient constraints during the training stage. Furthermore, with a simple dynamic re-weight strategy, we can avoid the time-consuming hyper-parameter choice of loss terms. Finally, we adopt the structure-aware distillation to further improve the model performance. Notably, our solution named LiteDepth ranks 2\(^{nd}\) in the MAI &AIM2022 Monocular Depth Estimation Challenge, with a si-RMSE of 0.311, an RMSE of 3.79, and the inference time is 37ms tested on the Raspberry Pi 4. Notably, we provide the fastest solution to the challenge. Codes and models will be released at https://github.com/zhyever/LiteDepth.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
HUAWEI HiAI engine introduction. https://developer.huawei.com/consumer/en/doc/2020315 (2018)
Snapdragon neural processing engine SDK. https://developer.qualcomm.com/docs/snpe/overview.html (2018)
Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychol. Behavior 11(1), 9–15 (2008)
Barron, J.T.: a general and adaptive robust loss function. In: CVPR, pp. 4331–4339 (2019)
Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: CVPR, pp. 4009–4018 (2021)
Chen, Z., et al.: AutoAlign: pixel-instance feature aggregation for multi-modal 3D object detection. arXiv preprint arXiv:2201.06493 (2022)
Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: AutoAlignv2: deformable feature aggregation for dynamic multi-modal 3D object detection. arXiv preprint arXiv:2207.10316 (2022)
Chen, Z., Li, Z., Zhang, S., Fang, L., Jiang, Q., Zhao, F.: Graph-DETR3D: rethinking overlapping regions for multi-view 3D object detection. arXiv preprint arXiv:2204.11582 (2022)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR, pp. 2002–2011 (2018)
Gerig, N., Mayo, J., Baur, K., Wittmann, F., Riener, R., Wolf, P.: Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements. PLoS ONE 13(1), e0189275 (2018)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV, pp. 3828–3838 (2019)
Hazirbas, C., Ma, L., Domokos, C., Cremers, D.: FuseNet: incorporating depth into semantic segmentation via fusion-based CNN architecture. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 213–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_14
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Ignatov, A., Malivenko, G., Plowman, D., Shukla, S., Timofte, R.: Fast and accurate single-image depth estimation on mobile devices, mobile AI 2021 challenge: Report. In: CVPR, pp. 2545–2557 (2021)
Ignatov, A., et al.: AI benchmark: running deep neural networks on android smartphones. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Ignatov, A., et al.: AI benchmark: all about deep learning on smartphones in 2019. In: ICCVW, pp. 3617–3635. IEEE (2019)
Ignatov, A., Timofte, R., et al.: Efficient single-image depth estimation on mobile devices, mobile AI & aim 2022 challenge: report. In: ECCV (2022)
Kim, D., Ga, W., Ahn, P., Joo, D., Chun, S., Kim, J.: Global-local path networks for monocular depth estimation with vertical cutDepth. arXiv preprint arXiv:2201.07436 (2022)
Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)
Li, Z.: Monocular depth estimation toolbox. https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox (2022)
Li, Z., Chen, Z., Li, A., Fang, L., Jiang, Q., Liu, X., Jiang, J.: Unsupervised domain adaptation for monocular 3D object detection via self-training. arXiv preprint arXiv:2204.11590 (2022)
Li, Z., et al.: SimIPU: Simple 2D image and 3D point cloud unsupervised pre-training for spatial-aware visual representations. arXiv preprint arXiv:2112.04680 (2021)
Li, Z., Chen, Z., Liu, X., Jiang, J.: DepthFormer: exploiting long-range correlation and local information for accurate monocular depth estimation. arXiv preprint arXiv:2203.14211 (2022)
Li, Z., Wang, X., Liu, X., Jiang, J.: BinsFormer: revisiting adaptive bins for monocular depth estimation. arXiv preprint arXiv:2204.00987 (2022)
Lite, T.: Deploy machine learning models on mobile and IoT devices (2019)
Liu, Y., Shu, C., Wang, J., Shen, C.: Structured knowledge distillation for dense prediction. IEEE TPAMI (2020)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Park, D., Ambrus, R., Guizilini, V., Li, J., Gaidon, A.: Is pseudo-lidar needed for monocular 3d object detection? In: ICCV, pp. 3142–3152 (2021)
Patil, V., Sakaridis, C., Liniger, A., Van Gool, L.: P3depth: monocular depth estimation with a piecewise planarity prior. In: CVPR, pp. 1610–1621 (2022)
Reading, C., Harakeh, A., Chae, J., Waslander, S.L.: Categorical depth distribution network for monocular 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8555–8564 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shu, C., Liu, Y., Gao, J., Yan, Z., Shen, C.: Channel-wise knowledge distillation for dense prediction. In: ICCV, pp. 5311–5320 (2021)
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. NeurIPS 33, 7462–7473 (2020)
Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: DADA: depth-aware domain adaptation in semantic segmentation. In: ICCV, pp. 7364–7373 (2019)
Wang, T., Pang, J., Lin, D.: Monocular 3D object detection with depth from motion. arXiv preprint arXiv:2207.12988 (2022)
Wang, W., Neumann, U.: Depth-aware CNN for RGB-D segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_9
Wang, Y., Li, X., Shi, M., Xian, K., Cao, Z.: Knowledge distillation for fast and accurate monocular depth estimation on mobile devices. In: CVPR, pp. 2457–2465 (2021)
Wang, Y., Guizilini, V.C., Zhang, T., Wang, Y., Zhao, H., Solomon, J.: DETR3D: 3D object detection from multi-view images via 3D-to-2D queries. In: Conference on Robot Learning, pp. 180–191. PMLR (2022)
Weng, X., Kitani, K.: Monocular 3D object detection with pseudo-lidar point cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Wofk, D., Ma, F., Yang, T.J., Karaman, S., Sze, V.: FastDepth: fast monocular depth estimation on embedded systems. In: ICRA, pp. 6101–6108. IEEE (2019)
Yang, G., Tang, H., Ding, M., Sebe, N., Ricci, E.: Transformers solve the limited receptive field for monocular depth prediction. In: ICCV (2021)
Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: ICCV, pp. 5684–5693 (2019)
You, Z., Tsai, Y.H., Chiu, W.C., Li, G.: Towards interpretable deep networks for monocular depth estimation. In: ICCV, pp. 12879–12888 (2021)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR, pp. 1851–1858 (2017)
Zhu, S., Brazil, G., Liu, X.: The edge of depth: explicit constraints between segmentation and depth. In: CVPR, pp. 13116–13125 (2020)
Acknowledgments
The research was supported by the National Natural Science Foundation of China (61971165, 61922027), and also is supported by the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Z., Chen, Z., Xu, J., Liu, X., Jiang, J. (2023). LiteDepth: Digging into Fast and Accurate Depth Estimation on Mobile Devices. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13802. Springer, Cham. https://doi.org/10.1007/978-3-031-25063-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-25063-7_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25062-0
Online ISBN: 978-3-031-25063-7
eBook Packages: Computer ScienceComputer Science (R0)