[go: up one dir, main page]

Skip to main content

Real-Time Sign Language Detection Leveraging Real-Time Translation

  • Conference paper
  • First Online:
Advancements in Interdisciplinary Research (AIR 2022)

Abstract

The outlook for the disabled people has been instantiated through the phenomena of analysing the gestures through signs which is converted in real-time into text. The aid to the people possessing an anomaly of being unable to hear or to speak through automation has been excruciatingly scrutinized over the past years. Diverse modus operandi has been induced for collation of Sign Language Detection with Text-to-Speech, escalating its utilization among common people having any disability. With the actuation of this prospect, these people can convey any message to the ones unknown to sign language. In the proposed articulation, we’ve tried to consummate the prowess of Convolutional Neural Networks for Sign Language Detection and thereby contemplating the efficiency through increasing the depth of the network. The output we got was phenomenal giving us a potent outlook for amalgamating it into the real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Suharjito, Anderson, R., Wiryana, F., Ariesta, M.C., Kusuma, G.P.: Sign language recognition application systems for deaf-mute people: a review based on input-process-output. Procedia Comput. Sci. 116, 441–448 (2017). https://doi.org/10.1016/j.procs.2017.10.028

  2. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2021). https://doi.org/10.1109/jproc.2020.3004555

    Article  Google Scholar 

  3. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). https://doi.org/10.1109/cvpr.2015.7298594

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/bf00994018

    Article  MATH  Google Scholar 

  5. Kau, L.-J., Su, W.-L., Yu, P.-J., Wei, S.-J.: A real-time portable sign language translation system. In: 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (2015). https://doi.org/10.1109/mwscas.2015.7282137

  6. Shahriar, S., et al.: Real-time american sign language recognition using skin segmentation and image category classification with convolutional neural network and deep learning. In: TENCON 2018 - 2018 IEEE Region 10 Conference. (2018). https://doi.org/10.1109/tencon.2018.8650524

  7. Nair, M.S., Nimitha, A.P., Idicula, S.M.: Conversion of Malayalam text to Indian sign language using synthetic animation. In: 2016 International Conference on Next Generation Intelligent Systems (ICNGIS) (2016). https://doi.org/10.1109/icngis.2016.7854002

  8. Mahesh, M., Jayaprakash, A., Geetha, M.: Sign language translator for mobile platforms. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (2017). https://doi.org/10.1109/icacci.2017.8126001

  9. Kumar, S., Wangyal, T., Saboo, V., Srinath, R.: Time series neural networks for real time sign language translation. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (2018). https://doi.org/10.1109/icmla.2018.00043

  10. Shivashankara, S., Srinath, S.: American sign language recognition system: an optimal approach. Int. J. Image Graph. Signal Process. 10, 18–30 (2018). https://doi.org/10.5815/ijigsp.2018.08.03

    Article  Google Scholar 

  11. Peressotti, F., Scaltritti, M., Miozzo, M.: Can sign language make you better at hand processing? PLoS ONE 13, e0194771 (2018). https://doi.org/10.1371/journal.pone.0194771

    Article  Google Scholar 

  12. Jérôme, F., Benoît, F., Anthony, C.: Deep learning applied to sign language. In: CEUR Workshop Proceedings, vol. 2491 (2019)

    Google Scholar 

  13. Schembri, A., Stamp, R., Fenlon, J., Cormier, K.: Variation and change in varieties of British sign language in England. In: Braber, N., Jansen, S. (eds.) Sociolinguistics in England, pp. 165–188. Palgrave Macmillan, London (2018). https://doi.org/10.1057/978-1-137-56288-3_7

    Chapter  Google Scholar 

  14. Koller, O.: Quantitative Survey of the State of the Art in Sign Language Recognition arXiv (2020). https://doi.org/10.48550/arXiv.2008.09918

  15. Abiyev, R.H., Arslan, M., Idoko, J.B.: Sign language translation using deep convolutional neural networks. KSII Trans. Internet Inf. Syst. 14 (2020). https://doi.org/10.3837/tiis.2020.02.009

  16. Pivac, L.: Learner autonomy in New Zealand sign language interpreting students. In: McKee, D., Rosen, R.S., McKee, R. (eds.) Teaching and Learning Signed Languages, pp. 197–221. Palgrave Macmillan, London (2014). https://doi.org/10.1057/9781137312495_10

    Chapter  Google Scholar 

  17. Dong, C., Leu, M.C., Yin, Z.: American sign language alphabet recognition using Microsoft Kinect. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2015). https://doi.org/10.1109/cvprw.2015.7301347

  18. Kania, K., Markowska-Kaczmar, U.: American sign language fingerspelling recognition using wide residual networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 97–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_10

    Chapter  Google Scholar 

  19. Kelly, D., Mc Donald, J., Markham, C.: Weakly supervised training of a sign language recognition system using multiple instance learning density matrices. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41, 526–541 (2011). https://doi.org/10.1109/tsmcb.2010.2065802

  20. Ibrahim, N.B., Selim, M.M., Zayed, H.H.: An automatic Arabic sign language recognition system (ArSLRS). J. King Saud Univ. – Comput. Inf. Sci. 30, 470–477 (2018). https://doi.org/10.1016/j.jksuci.2017.09.007

    Article  Google Scholar 

  21. Jimenez, J., Martin, A., Uc, V., Espinosa, A.: Mexican sign language alphanumerical gestures recognition using 3D Haar-like features. IEEE Lat. Am. Trans. 15, 2000–2005 (2017). https://doi.org/10.1109/tla.2017.8071247

    Article  Google Scholar 

  22. Mohandes, M., Deriche, M., Liu, J.: Image-based and sensor-based approaches to Arabic sign language recognition. IEEE Trans. Hum.-Mach. Syst. 44, 551–557 (2014). https://doi.org/10.1109/thms.2014.2318280

    Article  Google Scholar 

  23. Gallo, B., San-Segundo, R., Lucas, J.M., Barra, R., D’Haro, L.F., Fernandez, F.: Speech into sign language statistical translation system for deaf people. IEEE Lat. Am. Trans. 7, 400–404 (2009). https://doi.org/10.1109/tla.2009.5336641

    Article  Google Scholar 

  24. Lopez-Ludena, V., San-Segundo, R., Martin, R., Sanchez, D., Garcia, A.: Evaluating a speech communication system for deaf people. IEEE Lat. Am. Trans. 9, 565–570 (2011). https://doi.org/10.1109/tla.2011.5993744

    Article  Google Scholar 

  25. Dwivedi, S.A., Attry, A.: Juxtaposing deep learning models efficacy for ocular disorder detection of diabetic retinopathy for ophthalmoscopy. In: 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (2021). https://doi.org/10.1109/ispcc53510.2021.9609368

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Challa, N., Baishya, K., Rohatgi, V., Gupta, K. (2022). Real-Time Sign Language Detection Leveraging Real-Time Translation. In: Sugumaran, V., Upadhyay, D., Sharma, S. (eds) Advancements in Interdisciplinary Research. AIR 2022. Communications in Computer and Information Science, vol 1738. Springer, Cham. https://doi.org/10.1007/978-3-031-23724-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23724-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23723-2

  • Online ISBN: 978-3-031-23724-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics