[go: up one dir, main page]

Skip to main content

A Capsule Network for Hierarchical Multi-label Image Classification

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2022)

Abstract

Image classification is one of the most important areas in computer vision. Hierarchical multi-label classification applies when a multi-class image classification problem is arranged into smaller ones based upon a hierarchy or taxonomy. Thus, hierarchical classification modes generally provide multiple class predictions on each instance, whereby these are expected to reflect the structure of image classes as related to one another. In this paper, we propose a multi-label capsule network (ML-CapsNet) for hierarchical classification. Our ML-CapsNet predicts multiple image classes based on a hierarchical class-label tree structure. To this end, we present a loss function that takes into account the multi-label predictions of the network. As a result, the training approach for our ML-CapsNet uses a coarse to fine paradigm while maintaining consistency with the structure in the classification levels in the label-hierarchy. We also perform experiments using widely available datasets and compare the model with alternatives elsewhere in the literature. In our experiments, our ML-CapsNet yields a margin of improvement with respect to these alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahadori, M.T.: Spectral capsule networks. In: International Conference on Learning Representations Workshops (2018)

    Google Scholar 

  2. Chen, B., Huang, X., Xiao, L., Jing, L.: Hyperbolic capsule networks for multi-label classification. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3115–3124 (2020)

    Google Scholar 

  3. Davis, J., Liang, T., Enouen, J., Ilin, R.: Hierarchical classification with confidence using generalized logits. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1874–1881 (2021)

    Google Scholar 

  4. Dempster, A., Laird, N., Rubin, D.: Maximum-likehood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Methodol. 39, 1–38 (1977)

    Google Scholar 

  5. Deng, J., Krause, J., Berg, A.C., Fei-Fei, L.: Hedging your bets: optimizing accuracy-specificity trade-offs in large scale visual recognition. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3450–3457 (2012)

    Google Scholar 

  6. Deng, L.: The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  7. Dhall, A., Makarova, A., Ganea, O., Pavllo, D., Greeff, M., Krause, A.: Hierarchical image classification using entailment cone embeddings. In: Computer Vision and Pattern Recognition Workshops, pp. 836–837 (2020)

    Google Scholar 

  8. Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S.: Hierarchical annotation of medical images. Pattern Recogn. 44(10), 2436–2449 (2011)

    Article  Google Scholar 

  9. Hahn, T., Pyeon, M., Kim, G.: Self-routing capsule networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  10. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: International Conference on Artificial Neural Networks, pp. 44–51 (2011)

    Google Scholar 

  11. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations (2018)

    Google Scholar 

  12. Hussain, Z., et al.: Automatic understanding of image and video advertisements. In: Computer Vision and Pattern Recognition, pp. 1705–1715 (2017)

    Google Scholar 

  13. Jampour, M., Abbaasi, S., Javidi, M.: Capsnet regularization and its conjugation with resnet for signature identification. Pattern Recogn. 120, 107851 (2021)

    Article  Google Scholar 

  14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  15. Meng, Y., Shen, J., Zhang, C., Han, J.: Weakly-supervised hierarchical text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 6826–6833 (2019)

    Google Scholar 

  16. Neill, J.O.: Siamese capsule networks. arXiv E-preprints (2018)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  18. Ren, H., Yu, X., Zou, L., Zhou, Y., Wang, X., Bruzzone, L.: Extended convolutional capsule network with application on SAR automatic target recognition. Signal Process. 183, 108021 (2021)

    Article  Google Scholar 

  19. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based learning of hierarchical multilabel classification models. J. Mach. Learn. Res. 7, 1601–1626 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Seo, Y., Shin, K.S.: Hierarchical convolutional neural networks for fashion image classification. Expert Syst. Appl. 116, 328–339 (2019)

    Article  Google Scholar 

  22. Ubaru, S., Dash, S., Mazumdar, A., Günlük, O.: Multilabel classification by hierarchical partitioning and data-dependent grouping. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  23. Upadhyay, Y., Schrater, P.: Generative adversarial network architectures for image synthesis using capsule networks. arXiv E-preprint (2018)

    Google Scholar 

  24. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

    Article  MATH  Google Scholar 

  25. Wang, M., Deng, W.: Deep face recognition: a survey. Neurocomputing 429, 215–244 (2021)

    Article  Google Scholar 

  26. Wang, Z., Zhan, J., Duan, C., Guan, X., Lu, P., Yang, K.: A review of vehicle detection techniques for intelligent vehicles. IEEE Trans. Neural Netw. Learn. Syst. (2022)

    Google Scholar 

  27. Wehrmann, J., Cerri, R., Barros, R.: Hierarchical multi-label classification networks. In: International Conference on Machine Learning, pp. 5075–5084 (2018)

    Google Scholar 

  28. Xiang, C., Zhang, L., Tang, Y., Zou, W., Xu, C.: MS-CapsNet: a novel multi-scale capsule network. IEEE Signal Process. Lett. 25(12), 1850–1854 (2018)

    Article  Google Scholar 

  29. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  30. Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: International Conference on Computer Vision, pp. 2740–2748 (2015)

    Google Scholar 

  31. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  32. Zhang, Z., Xie, Y., Xing, F., McGough, M., Yang, L.: MDNet: a semantically and visually interpretable medical image diagnosis network. In: Computer Vision and Pattern Recognition, pp. 6428–6436 (2017)

    Google Scholar 

  33. Zhao, Y., Birdal, T., Deng, H., Tombari, F.: 3D point capsule networks. In: Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  34. Zhu, X., Bain, M.: B-CNN: branch convolutional neural network for hierarchical classification. arXiv E-prints pp. arXiv-1709 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khondaker Tasrif Noor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noor, K.T., Robles-Kelly, A., Kusy, B. (2022). A Capsule Network for Hierarchical Multi-label Image Classification. In: Krzyzak, A., Suen, C.Y., Torsello, A., Nobile, N. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2022. Lecture Notes in Computer Science, vol 13813. Springer, Cham. https://doi.org/10.1007/978-3-031-23028-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23028-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23027-1

  • Online ISBN: 978-3-031-23028-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics