Abstract
A threshold public key encryption protocol is a public key system where the private key is distributed among n different servers. It offers high security since no single server is entrusted to perform the decryption in its entirety. It is the core component of many multiparty computation protocols which involves mutually distrusting parties with common goals. It is even more useful when it is homomorphic, which means that public operations on ciphertexts translate to operations on the underlying plaintexts. In particular, Cramer, Damgård and Nielsen at Eurocrypt 2001 provided a new approach to multiparty computation from linearly homomorphic threshold encryption schemes. On the other hand, there has been recent interest in developing multiparty computations modulo \(2^k\) for a certain integer k, that closely match data manipulated by a CPU. Multiparty computation would therefore benefit from an encryption scheme with such a message space that would support a distributed decryption.
In this work, we provide the first threshold linearly homomorphic encryption whose message space is \(\textbf{Z}/2^k\textbf{Z}\) for any k. It is inspired by Castagnos and Laguillaumie’s encryption scheme from RSA 2015, but works with a class group of discriminant whose factorisation is unknown.
Its natural structure à la Elgamal makes it possible to distribute the decryption among servers using linear integer secret sharing, allowing any access structure for the decryption policy. Furthermore its efficiency and its flexibility on the choice of the message space make it a good candidate for applications to multiparty computation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Restricted Multiplication Straight-line Programs. This class captures polynomial-size branching programs, which includes arbitrary logspace computations and NC1 circuits.
References
Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30
Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_3
Benhamouda, F., Herranz, J., Joye, M., Libert, B.: Efficient cryptosystems from \(2^k\)-th power residue symbols. J. Cryptol. 30(2), 519–549 (2017)
Biasse, J.-F., Jacobson, M.J., Silvester, A.K.: Security estimates for quadratic field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-5_15
Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_5
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19
Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_6
Buchmann, J., Thiel, C., Williams, H.: Short representation of quadratic integers. In: Bosma, W., van der Poorten, A. (eds.) Computational Algebra and Number Theory. MAIA, vol. 325, pp. 159–185. Springer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-1108-1_12
Buchmann, J., Vollmer, U.: Binary Quadratic Forms: An Algorithmic Approach. Algorithms and Computation in Mathematics, Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-46368-9
Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptol. 1(2), 107–118 (1988). https://doi.org/10.1007/BF02351719
Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24
Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_7
Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_10
Castagnos, G., Laguillaumie, F.: On the security of cryptosystems with quadratic decryption: the nicest cryptanalysis. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 260–277. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_15
Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from \(\sf DDH\). In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_26
Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption modulo p. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_25
Catalano, D., Di Raimondo, M., Fiore, D., Giacomelli, I.: Mon\(\mathbb{Z}_{2^{k}}\)a: fast maliciously secure two party computation on \(\mathbb{Z}_{2^{k}}\). In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 357–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_13
Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data. In: CCS 2015, pp. 1518–1529. ACM (2015)
Chen, M., et al.: Diogenes: lightweight scalable RSA modulus generation with a dishonest majority. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 590–607 (2021)
Cox, D.: Primes of the Form \(x^2+ny^2\): Fermat, Class Field Theory, and Complex Multiplication. Pure and Applied Mathematics. Wiley, Hoboken (2014)
Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD\(\mathbb{Z}_{2^k}\): efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_26
Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18
Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_18
Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9
Damgård, I., Thorbek, R.: Linear integer secret sharing and distributed exponentiation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 75–90. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_6
Das, P., Jacobson, M.J., Scheidler, R.: Improved efficiency of a linearly homomorphic cryptosystem. In: Carlet, C., Guilley, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2019. LNCS, vol. 11445, pp. 349–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16458-4_20
Deng, Y., Ma, S., Zhang, X., Wang, H., Song, X., Xie, X.: Promise \(\Sigma \)-protocol: how to construct efficient threshold ECDSA from encryptions based on class groups. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 557–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_19
Devevey, J., Libert, B., Nguyen, K., Peters, T., Yung, M.: Non-interactive CCA2-secure threshold cryptosystems: achieving adaptive security in the standard model without pairings. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 659–690. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_24
Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log protocol with applications to homomorphic secret sharing. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 213–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_8
Dobson, S., Galbraith, S., Smith, B.: Trustless unknown-order groups. Math. Cryptol. 1(1), 1–15 (2021)
Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68637-0_23
Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_7
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. J. Crypto. 20(1), 51–83 (2007). https://doi.org/10.1007/s00145-006-0347-3
Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
Hoory, S., Magen, A., Pitassi, T.: Monotone circuits for the majority function. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM -2006. LNCS, vol. 4110, pp. 410–425. Springer, Heidelberg (2006). https://doi.org/10.1007/11830924_38
Hühnlein, D., Jacobson, M.J., Paulus, S., Takagi, T.: A cryptosystem based on non-maximal imaginary quadratic orders with fast decryption. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 294–307. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054134
Jacobson, M.J., van der Poorten, A.J.: Computational aspects of NUCOMP. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 120–133. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45455-1_10
Joye, M., Libert, B.: Efficient cryptosystems from 2k-th power residue symbols. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_5
Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36178-2_12
Lagarias, J.: Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Algorithms 1(2), 142–186 (1980)
Lai, R.W.F., Malavolta, G.: Subvector commitments with application to succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_19
Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_14
McCurley, K.S.: Cryptographic key distribution and computation in class groups. In: NATO Advanced Study Institutes on Number Theory and Applications. Kluwer (1989)
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24
Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over \(\mathbb{Z}_{2^k}\) from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 254–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_12
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
PARI Group, Univ. Bordeaux. PARI/GP version 2.11.4 (2020)
Paulus, S., Takagi, T.: A new public-key cryptosystem over a quadratic order with quadratic decryption time. J. Cryptol. 13(2), 263–272 (2000). https://doi.org/10.1007/s001459910010
Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th ACM STOC, pp. 187–196. ACM Press (2008)
Thorbek, R.: Linear integer secret sharing. Ph.D. thesis, Department of Computer Science, University of Aarhus (2009)
Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient CCA timed commitments in class groups. In: ACM CCS 2021, pp. 2663–2684 (2021)
Tucker, I.: Functional encryption and distributed signatures based on projective hash functions, the benefit of class groups. Ph.D. thesis, Université de Lyon (2020)
Valiant, L.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)
Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147 (2020). https://doi.org/10.1007/s00145-020-09364-x
Yuen, T.H., Cui, H., Xie, X.: Compact zero-knowledge proofs for threshold ECDSA with trustless setup. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 481–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_18
Acknowledgements
We thank Dario Catalano for helpful early discussions about these results and the anonymous reviewers for their comments in improving the work. This work was partially supported by the French ANR SANGRIA project (ANR-21-CE39-0006) and the French PEPR Cybersecurité SecureCompute project (ANR-22-PECY-0003). This work also recieved funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under projects PICOCRYPT (grant agreement No. 101001283), and TERMINET (grant agreement No. 957406), by the Spanish Government under projects SCUM (ref. RTI2018-102043-B-I00), by the Madrid Regional Government under project BLOQUES (ref. S2018/TCS-4339), and by a grant from Nomadic Labs and the Tezos foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Castagnos, G., Laguillaumie, F., Tucker, I. (2022). Threshold Linearly Homomorphic Encryption on \(\textbf{Z}/2^k\textbf{Z}\). In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13792. Springer, Cham. https://doi.org/10.1007/978-3-031-22966-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-22966-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22965-7
Online ISBN: 978-3-031-22966-4
eBook Packages: Computer ScienceComputer Science (R0)