[go: up one dir, main page]

Skip to main content

Explaining Ontology-Mediated Query Answers Using Proofs over Universal Models

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2022)

Abstract

In ontology-mediated query answering, access to incomplete data sources is mediated by a conceptual layer constituted by an ontology, which can be formulated in a description logic (DL) or using existential rules. In the literature, there exists a multitude of complex techniques for incorporating ontological knowledge into queries. However, few of these approaches were designed for explainability of the query answers. We tackle this challenge by adapting an existing proof framework toward conjunctive query answering, based on the notion of universal models. We investigate the data and combined complexity of determining the existence of a proof below a given quality threshold, which can be measured in different ways. By distinguishing various parameters such as the shape of the query, we obtain an overview of the complexity of this problem for several Horn DLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.w3.org/TR/owl2-overview/.

  2. 2.

    This derivation structure is uniquely determined except for the names of the vertices, which are irrelevant for our purposes since we use only their labels.

  3. 3.

    Unary encoding of n would make the problem much easier due to imposing a small (polynomial) upper bound on the (domain/tree) size of proofs. Hence, binary encoding puts more emphasis on the impact of the KB and the query on the decision problem.

  4. 4.

    A subproof S of a hypergraph H is a subgraph of H that is a proof s.t. the leaves of S are a subset of the leaves of H.

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases (1995)

    Google Scholar 

  2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.: Evonne: interactive proof visualization for description logics (system description). In: IJCAR (2022). https://doi.org/10.1007/978-3-031-10769-6_16

  3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding small proofs for description logic entailments: theory and practice. In: LPAR-23 (2020). https://doi.org/10.29007/nhpp

  4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: On the complexity of finding good proofs for description logic entailments. In: DL Workshop (2020). http://ceur-ws.org/Vol-2663/paper-1.pdf

  5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding good proofs for description logic entailments using recursive quality measures. In: CADE (2021). https://doi.org/10.1007/978-3-030-79876-5_17

  6. Alrabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Explaining ontology-mediated query answers using proofs over universal models (technical report) (2022). https://doi.org/10.48550/ARXIV.2208.14381

  7. Alrabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding good proofs for answers to conjunctive queries mediated by lightweight ontologies. In: DL Workshop (2022). http://ceur-ws.org/Vol-3263/paper-3.pdf

  8. Alrabbaa, C., Hieke, W., Turhan, A.: Counter model transformation for explaining non-subsumption in EL. In: Workshop on Formal and Cognitive Reasoning (2021). http://ceur-ws.org/Vol-2961/paper_2.pdf

  9. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic (2017). https://doi.org/10.1017/9781139025355

  10. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic \(\cal{EL} ^+\). In: Annual German Conference on AI (KI) (2007). https://doi.org/10.1007/978-3-540-74565-5_7

  11. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in the DL-Lite family of description logics. In: On the Move to Meaningful Internet Systems: OTM (2008). https://doi.org/10.1007/978-3-540-88873-4_35

  12. Borgida, A., Franconi, E., Horrocks, I.: Explaining \(\cal{ALC} \) subsumption. In: ECAI (2000). http://www.frontiersinai.com/ecai/ecai2000/pdf/p0209.pdf

  13. Bourgaux, C., Ozaki, A., Peñaloza, R., Predoiu, L.: Provenance for the description logic ELHr. In: IJCAI (2020). https://doi.org/10.24963/ijcai.2020/258

  14. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. J. Web Semant. (2012). https://doi.org/10.1016/j.websem.2012.03.001

    Article  Google Scholar 

  15. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reason. (2007). https://doi.org/10.1007/s10817-007-9078-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Calvanese, D., Lanti, D., Ozaki, A., Peñaloza, R., Xiao, G.: Enriching ontology-based data access with provenance. In: IJCAI (2019). https://doi.org/10.24963/ijcai.2019/224

  17. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: The complexity of explaining negative query answers in DL-Lite. In: KR (2012). http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4537

  18. Carral, D., Dragoste, I., Krötzsch, M.: The combined approach to query answering in Horn-\(\cal{ALCHOIQ} \). In: KR (2018). https://aaai.org/ocs/index.php/KR/KR18/paper/view/18076

  19. Ceylan, İ.İ., Lukasiewicz, T., Malizia, E., Molinaro, C., Vaicenavicius, A.: Explanations for negative query answers under existential rules. In: KR (2020). https://doi.org/10.24963/kr.2020/23

  20. Croce, F., Lenzerini, M.: A framework for explaining query answers in DL-Lite. In: Faron Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS (LNAI), vol. 11313, pp. 83–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03667-6_6

    Chapter  Google Scholar 

  21. Elhalawati, A., Krötzsch, M., Mennicke, S.: An existential rule framework for computing why-provenance on-demand for datalog. In: Governatori, G., Turhan, A.-Y. (eds.) RuleML+RR 2022, LNCS, vol. 13752, pp. 146–163. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21541-4_10

  22. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University of Manchester, UK (2011). https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF

  23. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In: ISWC (2010). https://doi.org/10.1007/978-3-642-17746-0_23

  24. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in protege. In: DL Workshop (2017). http://www.ceur-ws.org/Vol-1879/paper31.pdf

  25. Kazakov, Y., Krötzsch, M., Simančík, F.: The Incredible ELK. J. Autom. Reason. 53(1), 1–61 (2013). https://doi.org/10.1007/s10817-013-9296-3

    Article  MATH  Google Scholar 

  26. Koopmann, P.: Signature-based abduction with fresh individuals and complex concepts for description logics. In: IJCAI (2021). https://doi.org/10.24963/ijcai.2021/266

  27. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics. ACM Trans. Comput. Logic (2013). https://doi.org/10.1145/2422085.2422087

    Article  MathSciNet  MATH  Google Scholar 

  28. Marnette, B.: Generalized schema-mappings: from termination to tractability. In: PODS (2009). https://doi.org/10.1145/1559795.1559799

  29. McGuinness, D.L.: Explaining reasoning in description logics. Ph.D. thesis, Rutgers University, USA (1996). https://doi.org/10.7282/t3-q0c6-5305

  30. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-DL fragments of OWL 1 and 2. In: KR (2010). http://aaai.org/ocs/index.php/KR/KR2010/paper/view/1296

  31. Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the description logics \(\cal{SHOIQ} \) and \(\cal{SROIQ} \). In: IJCAI (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-178

  32. Peñaloza, R.: Axiom-pinpointing in description logics and beyond. Ph.D. thesis, Technische Universität Dresden, Germany (2009). https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-24743

  33. Ramusat, Y., Maniu, S., Senellart, P.: Efficient provenance-aware querying of graph databases with datalog. In: GRADES-NDA ACM Workshop (2022). https://doi.org/10.1145/3534540.3534689

  34. Rosati, R.: On conjunctive query answering in EL. In: DL Workshop (2007). http://ceur-ws.org/Vol-250/paper_83.pdf

  35. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description logic terminologies. In: IJCAI (2003). http://ijcai.org/Proceedings/03/Papers/053.pdf

  36. Stefanoni, G.: Explaining query answers in lightweight ontologies. Diploma thesis, Technische Universität Wien, Austria (2011). http://www.cs.ox.ac.uk/files/7942/thesis.pdf

Download references

Acknowledgments

This work was supported by the DFG grant 389792660 as part of TRR 248 – CPEC (https://perspicuous-computing.science), and QuantLA, GRK 1763 (https://lat.inf.tu-dresden.de/quantla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Kovtunova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alrabbaa, C., Borgwardt, S., Koopmann, P., Kovtunova, A. (2022). Explaining Ontology-Mediated Query Answers Using Proofs over Universal Models. In: Governatori, G., Turhan, AY. (eds) Rules and Reasoning. RuleML+RR 2022. Lecture Notes in Computer Science, vol 13752. Springer, Cham. https://doi.org/10.1007/978-3-031-21541-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21541-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21540-7

  • Online ISBN: 978-3-031-21541-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics