[go: up one dir, main page]

Skip to main content

Sub-region Segmentation of Brain Tumors from Multimodal MRI Images Using 3D U-Net

  • Conference paper
  • First Online:
Data Science and Algorithms in Systems (CoMeSySo 2022)

Abstract

Accurate segmentation of brain tumors from the magnetic resonance image (MRI) is an essential step for radionics analysis as well as finding the tumor extension is so necessary to plan the best treatment to improve the survival rate. Manually extracting sub-regions of the brain tumor from MRI is a tedious process and time-consuming, as the complex brain tumor images require extensive human expertise. In recent years, deep learning models have proved effective in medical image segmentation tasks. In brain tumor segmentation, the 3D multimodal MRI poses some challenges such as computation and memory limitations. This study aims to develop a deep learning model using 3D U-Net for brain tumor segmentation. The segmentation results on BraTS 2020 dataset show that the proposed model achieves promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quick brain tumor facts. https://braintumor.org/brain-tumor-information/brain-tumor-facts/. Accessed 23 Mar 2021

  2. Khalil, H.A., Darwish, S., Ibrahim, Y.M., Hassan, O.F.: 3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithm. Symmetry 12(8), 1256 (2020)

    Article  Google Scholar 

  3. Glioma. https://www.cancerresearchuk.org/about-cancer/brain-tumours/types/glioma-adults. Accessed 23 Mar 2021

  4. Glioma. https://rarediseases.org/rare-diseases/glioma/. Accessed 23 Mar 2021

  5. Banerjee, S., Mitra, S.: Novel volumetric sub-region segmentation in brain tumors. Front. Comput. Neurosci. 14, 3 (2020)

    Article  Google Scholar 

  6. Sun, L., Zhang, S., Chen, H., Luo, L.: Brain tumor segmentation and survival prediction using multimodal MRI scans with deep learning. Front. Neurosci. 13, 810 (2019)

    Article  Google Scholar 

  7. Qamar, S., Ahmad, P., Shen, L.: HI-Net: hyperdense inception 3D UNet for brain tumor segmentation. arXiv Preprint (2020). arXiv:2012.06760

  8. Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv Preprint (2018). arXiv:1811.02629

  9. Feng, X., Tustison, N.J., Patel, S.H., Meyer, C.H.: Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using radiomic features. Front. Comput. Neurosci. 14, 25 (2020)

    Article  Google Scholar 

  10. Srinivas, B., Sasibhushana Rao, G.: Segmentation of multi-modal MRI brain tumor sub-regions using deep learning. J. Electr. Eng. Technol. 15(4), 1899–1909 (2020). https://doi.org/10.1007/s42835-020-00448-z

    Article  Google Scholar 

  11. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: International MICCAI Brainlesion Workshop, pp. 358–368. Springer, Cham (2018)

    Google Scholar 

  12. Zhao, W., Jiang, D., Queralta, J.P., Westerlund, T.: MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net. Inf. Med. Unlocked 19, 100357 (2020)

    Article  Google Scholar 

  13. Ali, A.A., Chramcov, B., Jasek, R., Katta, R., Krayem, S.: Classification of plant diseases using convolutional neural networks. In: Silhavy, R. (eds.) Artificial Intelligence in Intelligent Systems. CSOC 2021. Lecture Notes in Networks and Systems, vol. 229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77445-5-24

  14. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer, Cham (2016)

    Google Scholar 

  15. Ali, A.A., Chramcov, B., Jasek, R., Katta, R., Krayem, S., Kadi, M.: Detection of steel surface defects using U-Net with pre-trained encoder. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds.) Software Engineering Application in Informatics. CoMeSySo 2021. Lecture Notes in Networks and Systems, vol. 232. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90318-3-18

  16. Ibtehaz, N., Rahman, M.S.: MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  17. Li, C., Chen, W., Tan, Y.: Point-Sampling method based on 3D U-Net architecture to reduce the influence of false positive and solve boundary blur problem in 3D CT image segmentation. Appl. Sci. 10(19), 6838 (2020)

    Article  Google Scholar 

  18. Ngo, D.K., Tran, M.T., Kim, S.H., Yang, H.J., Lee, G.S.: Multi-Task learning for small brain tumor segmentation from MRI. Appl. Sci. 10(21), 7790 (2020)

    Article  Google Scholar 

  19. BraTS2020 Dataset. https://www.kaggle.com/awsaf49/brats20-dataset-training-validation. Accessed 23 Mar 2021

  20. Multimodal brain tumor segmentation challenge 2020: data. https://www.med.upenn.edu/cbica/brats2020/data.html. Accessed 23 Mar 2021

  21. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  22. https://pytorch.org/docs/stable/generated/torch.nn.MaxPool3d.html

  23. Ho, Y., Wookey, S.: The real-world-weight cross-entropy loss function: modeling the costs of mislabeling. IEEE Access 8, 4806–4813 (2020). https://doi.org/10.1109/ACCESS.2019.2962617

    Article  Google Scholar 

  24. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization (2015). Accessed 13 Mar 2021. (Online). Available:https://arxiv.org/abs/1412.6980v9

  25. NVIDIA® TESLA® P100 GPU accelerator. https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf. Accessed 16 Jan 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasin Katta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, A.A., Katta, R., Jasek, R., Chramco, B., Krayem, S. (2023). Sub-region Segmentation of Brain Tumors from Multimodal MRI Images Using 3D U-Net. In: Silhavy, R., Silhavy, P., Prokopova, Z. (eds) Data Science and Algorithms in Systems. CoMeSySo 2022. Lecture Notes in Networks and Systems, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-031-21438-7_29

Download citation

Publish with us

Policies and ethics