Abstract
Development of next generation Internet of Things ecosystems will require bringing in (semi-)autonomic behaviors. While the research on autonomic systems has a long tradition, the question arises, are there any “off-the-shelf” tools that can be used directly to implement autonomic solutions/components for IoT deployments. The objective of this contribution is to compare real-world-based, autonomy-related requirements derived from ASSIST-IoT project pilots with existing tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
References
Cybernetics: Or Control and Communication in the Animal and the Machine, 2nd revised ed. 1961. Hermann & Cie–MIT Press, Paris–Cambridge (1948). ISBN 978-0-262-73009-9
Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). https://doi.org/10.1109/MC.2003.1160055
IBM: An Architectural Blueprint for Autonomic Computing, IBM White Paper (2005). https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
Poslad, S.: Autonomous systems and artificial life. In: Ubiquitous Computing Smart Devices, Smart Environments and Smart Interaction, pp. 317–341. Wiley (2009). ISBN 978-0-470-03560-3
Nami, M.R., Sharifi, M.: A survey of autonomic computing systems. In: Shi, Z., Shimohara, K., Feng, D. (eds.) IIP 2006. IIFIP, vol. 228, pp. 101–110. Springer, Boston, MA (2006). https://doi.org/10.1007/978-0-387-44641-7_11
What is autonomic computing?, 1 August 2018 OpenMind. https://www.bbvaopenmind.com/en/technology/digital-world/what-is-autonomic-computing/. Accessed 15 May 2021
Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering (FOSE 2007), pp. 259–268 (2007). https://doi.org/10.1109/FOSE.2007.19
Sarma, S., et al.: Cyberphysical-System-on-Chip (CPSoC): a self-aware mpsoc paradigm with cross-layer virtual sensing and actuation. In: Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition, pp. 625–628 (2015). EDA Consortium
Tsigkanos, C., Nenzi, L., Loreti, M., Garriga, M., Dustdar, S., Ghezzi, C.: Inferring analyzable models from trajectories of spatially-distributed internet of things. In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2019, pp. 100–106 (2019). https://doi.org/10.1109/SEAMS.2019.00021
Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer Science & Business Media, Heidelberg (2011)
Erbel, J., Brand, T., Giese, H., Grabowski, J.: OCCI-compliant, fully causal-connected architecture runtime models supporting sensor management. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 188–194. Montreal, QC, Canada (2019). https://doi.org/10.1109/SEAMS.2019.00032
Félix Solano, G., Diniz Caldas, R., Nunes Rodrigues, G., Vogel, T., Pelliccione, P.: Taming uncertainty in the assurance process of self-adaptive systems: a goal-oriented approach. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 89–99. Montreal, QC, Canada (2019). https://doi.org/10.1109/SEAMS.2019.00020
Gerostathopoulos, I., Pournaras, E.: TRAPPed in traffic? A self-adaptive framework for decentralized traffic optimization. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 32–38. Montreal, QC, Canada (2019). https://doi.org/10.1109/SEAMS.2019.00014
Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE (2018). https://elib.dlr.de/124092/
Pournaras, E., Pilgerstorfer, P., Asikis, T.: Decentralized collective learning for self-managed sharing economies. ACM Trans. Auton. Adapt. Syst. (TAAS) 13(2), 10 (2018)
Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6015–6022 (2019)
Vogel, T.: MRUBiS: an exemplar for model-based architectural self-healing and self-optimization. In: Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2018), pp. 101–107. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3194133.3194161
Barbosa, D.M., Lima, R.G.D.M., Maia, P.H.M., Costa, E.: Lotus@Runtime: a tool for runtime monitoring and verification of self-adaptive systems. In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 24–30 (2017). https://doi.org/10.1109/SEAMS.2017.18
Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for Web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004). https://doi.org/10.1109/TSE.2004.11
Krijt, F., Jiracek, Z., Bures, T., Hnetynka, P., Gerostathopoulos, I.: Intelligent ensembles - a declarative group description language and java framework. In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 116–122 (2017) https://doi.org/10.1109/SEAMS.2017.17
Schmid, S., Gerostathopoulos, I., Prehofer, C., Bures, T.: Self-adaptation based on big data analytics: a model problem and tool. In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 102–108 (2017). https://doi.org/10.1109/SEAMS.2017.20
Iftikhar, M.U., Ramachandran, G.S., Bollansée, P., Weyns, D., Hughes, D.: DeltaIoT: a self-adaptive internet of things exemplar. In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2017, pp. 76–82 (2017). https://doi.org/10.1109/SEAMS.2017.21
Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system exemplar. In: 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2015, pp. 88–92 (2015). https://doi.org/10.1109/SEAMS.2015.27
Keznikl, J., Bureš, T., Plášil, F., Kit, M.: Towards dependable emergent ensembles of components: the DEECo component model. In: Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture, pp. 249–252 (2012). https://doi.org/10.1109/WICSA-ECSA.212.39
Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECo: an ensemble-based component system. In: Proceedings of CBSE 2013, pp. 81–90. Vancouver, Canada (2013)
Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation. Ph.D. Dissertation, TR CMUISR-08-113, Carnegie Mellon University School of Computer Science, May 2008
Cheng, S.W., Garlan, D., Schmerl, B.: Evaluating the effectiveness of the Rainbow self-adaptive system. In: 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, Vancouver, BC, Canada, 2009, pp. 132–141 (2009). https://doi.org/10.1109/SEAMS.2009.5069082
Maia, P.H., Vieira, L., Chagas, M., Yu, Y., Zisman, A., Nuseibeh, B.: Dragonfly: a tool for simulating self-adaptive drone behaviours. In: IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 107–113. Montreal, QC, Canada (2019). https://doi.org/10.1109/SEAMS.2019.00022
Moreno, G., Kinneer, C., Pandey, A., Garlan, D.: DARTSim: an exemplar for evaluation and comparison of self-adaptation approaches for smart cyber-physical systems. In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS) (2019)
Acknowledgment
Work of Maria Ganzha, Piotr Lewandowski, Marcin Paprzycki, Wiesław Pawłowski and Katarzyna Wasielewska-Michniewska was sponsored by the ASSIST-IoT project, which received funding from the EU’s Horizon 2020 research and innovation program under grant agreement No. 957258.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nalinaksh, K., Lewandowski, P., Ganzha, M., Paprzycki, M., Pawłowski, W., Wasielewska-Michniewska, K. (2021). Implementing Autonomic Internet of Things Ecosystems – Practical Considerations. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-86359-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86358-6
Online ISBN: 978-3-030-86359-3
eBook Packages: Computer ScienceComputer Science (R0)