[go: up one dir, main page]

Skip to main content

Artificial Intelligence in Clinical Toxicology

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Artificial intelligence (AI), mainly machine learning and deep learning algorithms, have advanced remarkably in the multiple domains of medical sciences. Clinical toxicology is a branch of toxicology that explores the adverse effects resulting from exposure to the various harmful chemicals on humans. In this chapter, we explored a broad understanding of AI methods with a special focus on their applications in clinical toxicology. The future of clinical development hugely relies on the convergence of the latest digital data resources as well as the advanced computing capabilities by efficiently utilizing AI and machine learning algorithms. The advancement of computational and AI-based methods for virtual screening and in silico drug design has made significant progress over the last decade. Also, the use of the deep neural network in conjunction with data-driven and mechanistic modeling for clinical toxicology evaluation has emerged as a promising field for research and development. We describe the fundamental concepts of clinical toxicology and AI in this chapter. Machine learning architectures are used to analyze and learn from publicly accessible biomedical and clinical trial datasets, real-world information from sensors, and health records are briefly covered. Recognition of complex patterns in toxicological data using advanced AI methods and its assistance in detection, characterization, and monitoring of clinical diseases are also elaborated. The future of AI and its impact on clinical toxicology is also discussed and summarized in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McMichael AJ. The urban environment and health in a world of increasing globalization: issues for developing countries. Bull World Health Organ. 2000;78:1117–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Krewski D, Acosta D Jr, Andersen M, Anderson H, Bailar JC III, Boekelheide K, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Health, Part B. 2010;13(2–4):51–138.

    Article  CAS  Google Scholar 

  3. Barile FA. Clinical toxicology: principles and mechanisms. CRC Press; 2010.

    Book  Google Scholar 

  4. Montoya ID, McCann DJ. Drugs of abuse: management of intoxication and antidotes. Mol Clin Environ Toxicol. 2010;100:519–41.

    Article  CAS  Google Scholar 

  5. Baud FJ, Houzé P. Introduction to clinical toxicology. In: An introduction to interdisciplinary toxicology. Elsevier; 2020. p. 413–28.

    Chapter  Google Scholar 

  6. Luch A. Molecular, clinical and environmental toxicology: volume 3: Environmental toxicology. Springer Science & Business Media; 2012.

    Book  Google Scholar 

  7. Baud F, Houzé P, Villa A, Borron S, Carli P, editors. Toxicodynetics: a new discipline in clinical toxicology. Annales pharmaceutiques francaises. Elsevier; 2016.

    Google Scholar 

  8. Poppenga RH. Poisonous plants. Mol Clin Environ Toxicol. 2010;100:123–75.

    Article  CAS  Google Scholar 

  9. Sullivan DW, Gad S. Clinical toxicology and clinical analytical toxicology. In: Information resources in toxicology. Elsevier; 2020. p. 237–40.

    Chapter  Google Scholar 

  10. Fok H, Webb D, Sandilands E. Clinical toxicologists: the poison specialists. BMJ. 2016;355:i4973.

    Article  Google Scholar 

  11. Kuča K, Pohanka M. Chemical warfare agents. Mol Clin Environ Toxicol. 2010;100:543–58.

    Article  Google Scholar 

  12. Bijlsma N, Cohen MM. Environmental chemical assessment in clinical practice: Unveiling the elephant in the room. Int J Environ Res Public Health. 2016;13(2):181.

    Article  Google Scholar 

  13. Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health. 2018;8(2):020303.

    Article  Google Scholar 

  14. Maddox TM. Questions for artificial intelligence in health care. JAMA. 2018;321:31.

    Article  Google Scholar 

  15. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inform. 2016;21(1):4–21.

    Article  Google Scholar 

  16. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article  Google Scholar 

  17. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  Google Scholar 

  18. Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MDM, Blanco Díaz GD, Cima Cabal MD, et al. Toxicity prediction based on artificial intelligence: a multidisciplinary overview. WIREs Comput Mol Sci. 2021;e1516. (Early View) https://doi.org/10.1002/wcms.1516.

  19. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.

    Article  Google Scholar 

  20. Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019;40(9):624–35.

    Article  CAS  Google Scholar 

  21. Parasuraman S. Prediction of activity spectra for substances. J Pharmacol Pharmacother. 2011;2(1):52.

    Article  CAS  Google Scholar 

  22. Rodgers AD, Zhu H, Fourches D, Rusyn I, Tropsha A. Modeling liver-related adverse effects of drugs using k nearest neighbor quantitative structure− activity relationship method. Chem Res Toxicol. 2010;23(4):724–32.

    Article  CAS  Google Scholar 

  23. Kampouraki A, Vassis D, Belsis P, Skourlas C. e-Doctor: A web based support vector machine for automatic medical diagnosis. Procedia – Soc Behav Sci. 2013;73:467–74.

    Article  Google Scholar 

  24. Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B. Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther. 2020;47(5):363–72.

    Article  Google Scholar 

  25. Vatansever S, Schlessinger A, Wacker D, Kaniskan HÜ, Jin J, Zhou MM, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: state-of-the-arts and future directions. Med Res Rev. 2020;41:1427–73.

    Article  Google Scholar 

  26. Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2019;33(1):20–37.

    Article  Google Scholar 

  27. Chary MA, Manini AF, Boyer EW, Burns M. The role and promise of artificial intelligence in medical toxicology. J Med Toxicol. 2020;16:458–64.

    Article  Google Scholar 

  28. Korotcov A, Tkachenko V, Russo DP, Ekins S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol Pharm. 2017;14(12):4462–75.

    Article  CAS  Google Scholar 

  29. Wang H, Liu R, Schyman P, Wallqvist A. Deep neural network models for predicting chemically induced liver toxicity endpoints from transcriptomic responses. Front Pharmacol. 2019;10:42.

    Article  Google Scholar 

  30. Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80.

    Article  Google Scholar 

  31. Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem Res Toxicol. 2019;32(4):536–47.

    Article  CAS  Google Scholar 

  32. El-Khateeb E, Burkhill S, Murby S, Amirat H, Rostami-Hodjegan A, Ahmad A. Physiological-based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20-years; in-depth analysis of applications, organizations, and platforms. Biopharm Drug Dispos. 2020;42:107.

    Article  Google Scholar 

  33. Stead WWJJ. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107–8.

    Article  Google Scholar 

  34. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230.

    Article  Google Scholar 

  35. Buch VH, Ahmed I, Maruthappu M. Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract. 2018;68(668):143–4.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Council of Scientific and Industrial Research, New Delhi and CSIR-Indian Institute of Toxicology Research, Lucknow (Manuscript communication number 3749) for the research funding support and computational resources. MS thanks the Department of Science and Technology, Government of India, New Delhi for the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishnan Parthasarathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sinha, M., G., P., Sachan, D.K., Parthasarathi, R. (2022). Artificial Intelligence in Clinical Toxicology. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_137

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_137

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics