[go: up one dir, main page]

Skip to main content

Genetic Learning Analysis of Fuzzy Rule-Based Classification Systems Considering Data Reduction

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

In this paper, we evaluated the Knowledge Base building of Fuzzy Rule-Based Classification Systems (FRBCS) with the purpose of find a balance between the accuracy and interpretability objectives. Regarding to build, we compared two well-known algorithms: Wang-Mendel, to generate the rule base, and NSGA-II, to learn the rules and tuning the membership functions. The Wang-Mendel algorithm was also used to introduce a seed in NSGA-II initial population, in order to increase its quality and improve convergence speed. Taking into account that the automatic building of the fuzzy systems knowledge base is challenger, because of the amount of data available in several real problems, we analysed the impact of data reduction on it. The experiments were carried out with 23 datasets divided into small and medium-large size, and the results showed that the use of genetic learning is suitable to large datasets as well as data reduction, improving the accuracy and interpretability of the FRBCS arising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alamaniotis, M., Jevremovic, T.: Hybrid fuzzy-genetic approach integrating peak identification and spectrum fitting for complex gamma-ray spectra analysis. IEEE Trans. Nucl. Sci. 62 (2015). https://doi.org/10.1109/TNS.2015.2432098

  2. Alcalá-Fdez, J., et al.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  3. Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.: Multi-objective evolutionary generation of Mamdani fuzzy rule-based systems based on rule and condition selection. In: 2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS), pp. 47–53 (2011). https://doi.org/10.1109/GEFS.2011.5949489

  4. Antonelli, M., Ducange, P., Marcelloni, F.: Multi-objective evolutionary rule and condition selection for designing fuzzy rule-based classifiers. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–7 (2012). https://doi.org/10.1109/FUZZ-IEEE.2012.6251174

  5. Antonelli, M., Ducange, P., Marcelloni, F.: An efficient multi-objective evolutionary fuzzy system for regression problems. Int. J. Approx. Reason. 54(9), 1434–1451 (2013). https://doi.org/10.1016/j.ijar.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonelli, M., Ducange, P., Marcelloni, F.: Genetic training instance selection in multiobjective evolutionary fuzzy systems: a coevolutionary approach. IEEE Trans. Fuzzy Syst. 20(2), 276–290 (2012). https://doi.org/10.1109/TFUZZ.2011.2173582

    Article  Google Scholar 

  7. Bertoni, F.C., Pires, M.G.: Aplicação de algoritmos evolutivos multiobjetivo na seleção de instâncias. In: Simpósio Brasileiro de Sistemas de Informação, Lavras, MG, pp. 261–268 (2017)

    Google Scholar 

  8. Cardoso, M., Loula, A., Pires, M.G.: Automated fuzzy system based on feature extraction and selection for opinion classification across different domains. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 24, 93–122 (2016)

    Article  Google Scholar 

  9. Cintra, M.E., Monard, M.C., Camargo, H.A.: Data base definition and feature selection for the genetic generation of fuzzy rule bases. Evol. Syst. 1(4), 241–252 (2010). https://doi.org/10.1007/s12530-010-9018-6

    Article  Google Scholar 

  10. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases, vol. 19 (2001). https://doi.org/10.1142/4177

  11. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. Int. J. Approx. Reason. 20(1), 21–45 (1999). https://doi.org/10.1016/S0888-613X(00)88942-2

    Article  Google Scholar 

  12. Correia, M.G., Bertoni, F.C.: Seleção de características utilizando um algoritmo genético multiobjetivo. In: IV Workshop de Iniciação Científica em Sistemas de Informação, Lavras, MG, pp. 37–40 (2017)

    Google Scholar 

  13. Darwish, S.: Uncertain measurement for student performance evaluation based on selection of boosted fuzzy rules. IET Sci. Meas. Technol. 11 (2016). https://doi.org/10.1049/iet-smt.2016.0265

  14. de Castro Ribeiro, M.G., et al.: Detection and classification of faults in aeronautical gas turbine engine: a comparison between two fuzzy logic systems. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7 (2018). https://doi.org/10.1109/FUZZ-IEEE.2018.8491444

  15. Fazzolari, M., Giglio, B., Alcalá, R., Marcelloni, F., Herrera, F.: A study on the application of instance selection techniques in genetic fuzzy rule-based classification systems: accuracy-complexity trade-off. Knowl.-Based Syst. 54(C), 32–41 (2013). https://doi.org/10.1016/j.knosys.2013.07.011

    Article  Google Scholar 

  16. Fernández, A., López, V., José del Jesus, M., Herrera, F.: Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl.-Based Syst. 80, 109–121 (2015). https://doi.org/10.1016/j.knosys.2015.01.013

    Article  Google Scholar 

  17. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011). https://doi.org/10.1016/j.ins.2011.02.021

    Article  Google Scholar 

  18. García-Pedrajas, N., de Haro-García, A., Pérez-Rodríguez, J.: A scalable approach to simultaneous evolutionary instance and feature selection. Inf. Sci. 228, 150–174 (2013). https://doi.org/10.1016/j.ins.2012.10.006

    Article  MathSciNet  Google Scholar 

  19. García-Pedrajas, N., Pérez-Rodríguez, J.: Multi-selection of instances: a straightforward way to improve evolutionary instance selection. Appl. Soft Comput. 12(11), 3590–3602 (2012). https://doi.org/10.1016/j.asoc.2012.06.013

    Article  Google Scholar 

  20. Giglio, B., Marcelloni, F., Fazzolari, M., Alcala, R., Herrera, F.: A case study on the application of instance selection techniques for genetic fuzzy rule-based classifiers. In: IEEE International Conference on Fuzzy Systems, pp. 1–8 (2012). https://doi.org/10.1109/FUZZ-IEEE.2012.6251191

  21. Gorbunov, I., Subhankulova, S.R., Hodashinsky, I., Yankovskaya, A.: Comparative analysis of feature selection algorithms in construction of fuzzy classifiers. In: IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), pp. 1–3 (2016). https://doi.org/10.1109/ICAICT.2016.7991669

  22. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1, 27–46 (2008)

    Article  Google Scholar 

  23. Mirshekarian, S., Süer, G.A.: Experimental study of seeding in genetic algorithms with non-binary genetic representation. J. Intell. Manuf. 29(7), 1637–1646 (2018). https://doi.org/10.1007/s10845-016-1204-3

    Article  Google Scholar 

  24. Ravindranath, V., Ra, S., Ramasubbareddy, S., Remya, S., Nalluri, S.: Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset, pp. 1–5 (2017). https://doi.org/10.1109/ICCNI.2017.8123815

  25. Rodriguez-Fdez, I., Mucientes, M., Bugarín, A.: Reducing the complexity in genetic learning of accurate regression TSK rule-based systems, pp. 1–8 (2015). https://doi.org/10.1109/FUZZ-IEEE.2015.7337930

  26. Tsai, C.F., Chen, Z.Y., Ke, S.W.: Evolutionary instance selection for text classification. J. Syst. Softw. 90, 104–113 (2014). https://doi.org/10.1016/j.jss.2013.12.034

    Article  Google Scholar 

  27. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Fuzzy Syst. Man Cybern. 22(6), 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Giovanni Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

dos Santos, A.H.M., Pires, M.G., Bertoni, F.C. (2020). Genetic Learning Analysis of Fuzzy Rule-Based Classification Systems Considering Data Reduction. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12320. Springer, Cham. https://doi.org/10.1007/978-3-030-61380-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61380-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61379-2

  • Online ISBN: 978-3-030-61380-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics