Abstract
Cortical neural networks in vivo are able to retain their activity evoked by a short stimulus. We compare and analyze two mathematical models of ring-structured networks of an orientational hypercolumn of the visual cortex in order to distinguish the contributions of recurrent connections, synaptic depression and slow synaptic kinetics into the retention effect. Comparison of a more elaborated model with the classical ring-model has helped to translate the mathematical analysis of the later model to the former one. As shown, the network with developed recurrent connections reproduces the retention effect compared to that in experiments. The synaptic depression prevents the effect, however the long-lasting excitatory synaptic current recovers the property. Accounting of the slow kinetics of the NMDA receptors, a characteristic post-peak plateau of activity is reproduced. The models show an invariance to contrast of visual stimuli. Simulations reveal a major role of strong excitatory recurrent connections in the retention effect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sperling, G.: The information available in brief visual presentations. Psychol. Monogr. 74(11), 1–29 (1960)
Coltheart, M.: The persistences of vision. Phil. Trans. R. Soc. Lond. B Biol. Sci. 290(1038), 57–69 (1980)
Loftus, G.R., Duncan, J., Gehrig, P.: On the time course of perceptual information that results from a brief visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 18(2), 530–549 (1992)
Land, R., Engler, G., Kral, A., Engel, A.K.: Response properties of local field potentials and multiunit activity in the mouse visual cortex. Neuroscience 254(19), 141–151 (2013)
Reinhold, K., Lien, A.D., Scanziani, M.: Distinct recurrent versus afferent dynamics in cortical visual processing. Nat. Neurosci. 18(12), 1789–1797 (2015)
Sachidhanandam, S., Sreenivasan, V., Kyriakatos, A., Kremer, Y., Petersen, C.C.: Membrane potential correlates of sensory perception in mouse barrel cortex. Nat. Neurosci. 16(11), 1671–1677 (2013). https://doi.org/10.1038/nn.3532. Epub 2013 Oct 6
Ayzenshtat, I., Gilad, A., Zurawel, G., Slovin, H.: Population response to natural images in the primary visual cortex encodes local stimulus attributes and perceptual processing. J. Neurosci. 32(40), 13971–13986 (2012)
Muller, L., Reynaud, A., Chavane, F., Destexhe, A.: The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. https://doi.org/10.1038/ncomms4675
Reynaud, A., Takerkart, S., Masson, G.S., Chavane, F.: Linear model decomposition for voltage-sensitive dye imaging signals: application in awake behaving monkey. NeuroImage 54(2), 1196–1210 (2011)
Jancke, D., Chavane, F., Naaman, S., Grinvald, A.: Imaging cortical correlates of illusion in early visual cortex. Nature 428(6981), 423–426 (2004)
Griffen, T.C., Haley, M.S., Fontanini, A., Maffei, A.: Rapid plasticity of visually evoked responses in rat monocular visual cortex. PLoS One 12(9), e0184618 (2017)
Todorov, M.I., Kékesi, K.A., Borhegyi, Z., Galambos, R., Juhász, G., Hudetz, A.G.: Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials. Physiol. Rep. 4(19), e12986 (2016)
Keysers, C., Xiao, D.K., Foldiak, P., Perrett, D.I.: Out of sight but not out of mind: the neurophysiology of iconic memory in the superior temporal sulcus. Cogn. Neuropsychol. 22(3), 316–332 (2005)
Zhou, H., Davidson, M., Kok, P., McCurdy, L.Y., de Lange, F.P., Lau, H., Sandberg, K.: Spatiotemporal dynamics of brightness coding in human visual cortex revealed by the temporal context effect. NeuroImage. https://doi.org/10.1016/j.neuroimage.2019.116277
Podvalny, E., Yeagle, E., Mégevand, P., Sarid, N., Harel, M., Chechik, G., Mehta, A.D., Malach, R.: Invariant temporal dynamics underlie perceptual stability in human visual cortex. Curr. Biol. 27(2), 155–165 (2017)
Palva, S., Linkenkaer-Hansen, K., Näätänen, R., Palva, J.M.: Early neural correlates of conscious somatosensory perception. J. Neurosci. 25(21), 5248–5258 (2005)
Funayama, K., Minamisawa, G., Matsumoto, N., Ban, H., Chan, A.W., Matsuki, N., Murphy, T.H., Ikegaya, Y.: Neocortical rebound depolarization enhances visual perception. PLoS Biol. 13(8), e1002231 (2015)
Funayama, K., Hagura, N., Ban, H., Ikegaya, Y.: Functional organization of flash-induced V1 offline reactivation. J. Neurosci. 36(46), 11727–11738 (2016)
Usrey, W.M., Alitto, H.J.: Visual functions of the thalamus. Annu. Rev. Vis. Sci. 1, 351–371 (2015)
Van Essen, D.C., Lewis, J.W., Drury, H.A., Hadjikhani, N., Tootell, R.B., Bakircioglu, M., Miller, M.I.: Mapping visual cortex in monkeys and humans using surface-based atlases. Vision. Res. 41(10–11), 1359–1378 (2001)
Kaas, J.H.: Evolution of columns, modules, and domains in the neocortex of primates. Proc. Natl. Acad. Sci. U.S.A. 109, 10655–10660 (2012)
Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)
Hübener, M., Shoham, D., Grinvald, A., Bonhoeffer, T.: Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17(23), 9270–9284 (1997)
Ben-Yishai, R., Bar-Or, R.L., Sompolinsky, H.: Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. U.S.A. 92(9), 3844–3848 (1995)
Hansel, D., Sompolinsky, H.: Modeling feature selectivity in local cortical circuits. In: Methods in Neuronal Modeling: From Ions to Networks, pp. 499–657. MIT Press (1998)
Van Rossum, M.C.W., van der Meer, M.A.A., Xiao, D., Oram, M.W.: Adaptive integration in the visual cortex by depressing recurrent cortical circuits. Neural Comput. 20(7), 1847–1872 (2008)
Smirnova, E., Chizhov, A.V.: Orientation hypercolumns of the visual cortex: ring model. Biofizika 56(3), 527–533 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tiselko, V.S., Kozeletskaya, M.G., Chizhov, A.V. (2021). Neural Activity Retaining in Response to Flash Stimulus in a Ring Model of an Orientation Hypercolumn with Recurrent Connections, Synaptic Depression and Slow NMDA Kinetics. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V., Tiumentsev, Y. (eds) Advances in Neural Computation, Machine Learning, and Cognitive Research IV. NEUROINFORMATICS 2020. Studies in Computational Intelligence, vol 925. Springer, Cham. https://doi.org/10.1007/978-3-030-60577-3_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-60577-3_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60576-6
Online ISBN: 978-3-030-60577-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)