[go: up one dir, main page]

Skip to main content

A Survey of Artificial Intelligence-Based E-Commerce Recommendation System

  • Conference paper
  • First Online:
Emerging Trends in ICT for Sustainable Development

Abstract

Recommendation systems have led to the growth of many e-commerce and content providing companies because they perform well in modelling consumer’s habit and providing personalization to users. Recommendation system used in E-commerce has been extensively researched and a number of algorithms/methods have been proposed. These methods can be a linear or a non-linear approach. Neural networks are proven non-linear techniques that outperform the linear techniques and have produced satisfactory results on various available recommendation datasets. Deep learning neural networks have also proven their efficiency in domains such as computer vision and natural language processing and of recent is been applied to recommender systems because of high performance. In this paper, we reviewed deep learning methods that have been applied to recommender systems in E-commerce both in academics and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  • Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for deep text recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 107–114 (2016)

    Google Scholar 

  • Chen, Y., De Rijke, M.: A collective variational autoencoder for top-N recommendation with side information. In: DLRS (2018)

    Google Scholar 

  • Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative filtering multimedia recommendation with item-and component-level attention (2017)

    Google Scholar 

  • Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide and deep learning for recommender systems. In: Recsys, pp. 7–10 (2016)

    Google Scholar 

  • Covington, P., Adams, J., Sargin, E.: Deep neural networks for Youtube recommendations. In: Recsys, pp. 191–198 (2016)

    Google Scholar 

  • Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization (2015). arXiv:1511.06443

  • Gomez-Uribe, C.A., Hunt, N.: The Netflix recommender system: algorithms, business value, and innovation. TMIS 6(4), 13 (2016)

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Chapter 6 (2016)

    Google Scholar 

  • Guy, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 1725–1731 (2017)

    Google Scholar 

  • He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  • Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. In: International Conference on Learning Representations (2015)

    Google Scholar 

  • Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: ACM, pp. 811–820 (2015)

    Google Scholar 

  • Lian, J., Zhang, F., Xie, X., Sun, G.: CCCFNet: a content-boosted collaborative filtering neural network for cross domain recommender systems. In: WWW, pp. 817–818 (2017)

    Google Scholar 

  • Niu, W., Cavarlee, J., Lu, H.: Neural personalized ranking for image recommendation. In: Proceedings of the 11th ACM International Conference on Web Search and Data Minings, pp. 423–431 (2018)

    Google Scholar 

  • Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning (2007)

    Google Scholar 

  • Sedan, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: WWW, pp. 111–112 (2015)

    Google Scholar 

  • Song, B., Yang, X., Cao, Y., Xu, C.: Neural Collaborative Ranking (2018). arXiv:1808.04957

  • Tan, Y.K., Xu, X., Liu, Y.: Improved recurrent neural networks for session-based recommendations. In: Recys, pp. 17–22 (2016)

    Google Scholar 

  • Van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: NIPS, pp. 2643–2651 (2013)

    Google Scholar 

  • Wang, X., He, X., Nie, L., Chua, T.: Item silk road: recommending items from information domains to social users (2017)

    Google Scholar 

  • Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., Zhang, P., Zhang, D.: IRGAN: a minimax game for unifying generative and discruminative information retrieval models (2017)

    Google Scholar 

  • Wang, S., Wang, Y., Tang, J., Shu, K., Ranganath, S., Liu, H.: What your images reveal: exploiting visual contents for point-of-interest recommendation. In: WWW (2017)

    Google Scholar 

  • Wu, C., Ahmed, A., Beutel, A., Smola, A.J., Jing, H.: Recurrent recommender networks. In: WSDM, pp. 495–503 (2017)

    Google Scholar 

  • Xue, H., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization models for recommender systems. In: IJCAL, pp. 3203–3209 (2017)

    Google Scholar 

  • Zhang, S., Yao, L., Xu, X.: AutoSVD++: an efficient hybrid collaborative filtering model via contractive autoencoders (2017)

    Google Scholar 

  • Zhang, S., Yao, L., Sun, A., Wang, S., Long, G., Dong, M.: NeuRec: on nonlinear transformation for personalized ranking (2018). arXiv:1805.03002

  • Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 1(1) (2018)

    Google Scholar 

  • Zhang, S., Tay, Y., Yao, L., Sun, A.: Next item recommendation with self-attention (2018). arXiv:1808.06414

  • Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., Tang, J.: Deep reinforcement learning for page-wise recommendations. In: RecSys (2018)

    Google Scholar 

  • Zheng, Y., Liu, C., Tang, B.: Neural autoregressive collaborative filtering for implicit feedback. In: DLRS (2016)

    Google Scholar 

  • Zheng, L., Noroozi, V., Yu, P.S.: Joint deep modeling of users and items using reviews for recommendation. In: WSDM (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khoali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoali, M., Tali, A., Laaziz, Y. (2021). A Survey of Artificial Intelligence-Based E-Commerce Recommendation System. In: Ben Ahmed, M., Mellouli, S., Braganca, L., Anouar Abdelhakim, B., Bernadetta, K.A. (eds) Emerging Trends in ICT for Sustainable Development. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-53440-0_12

Download citation

Publish with us

Policies and ethics