Abstract
Adjoint triples are a general structure composed of operators satisfying weak properties, which are usefully used in important frameworks such as fuzzy logic programming, formal concept analysis and fuzzy relation equations. In this work, we will analyze how the exchange principle law should be defined on adjoint triples and what conditions the conjunction of an adjoint triple should fulfill in order to guarantee that its corresponding residuated implications satisfy such property.
Partially supported by the State Research Agency (AEI) and the European Regional Development Fund (ERDF) project TIN2016-76653-P.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous semantics. In: Logic Programming and Non-Monotonic Reasoning, LPNMR’01, pp. 351–364. Lecture Notes in Artificial Intelligence 2173 (2001)
Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Characterizing reducts in multi-adjoint concept lattices. Inf. Sci. 422, 364–376 (2018)
Medina, J., Ojeda-Aciego, M.: Multi-adjoint t-concept lattices. Inf. Sci. 180(5), 712–725 (2010)
Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)
Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices. Inf. Sci. 190, 95–106 (2012)
Benítez-Caballero, M.J., Medina, J., Ramírez-Poussa, E., Ślȩzak, D.: Bireducts with tolerance relations. Inf. Sci. 435, 26–39 (2018)
Cornelis, C., Medina, J., Verbiest, N.: Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection. Int. J. Approximate Reasoning 55, 412–426 (2014)
Díaz-Moreno, J.C., Medina, J.: Multi-adjoint relation equations: Definition, properties and solutions using concept lattices. Inf. Sci. 253, 100–109 (2013)
Díaz-Moreno, J.C., Medina, J.: Using concept lattice theory to obtain the set of solutions of multi-adjoint relation equations. Inf. Sci. 266, 218–225 (2014)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: A comparative study of adjoint triples. Fuzzy Sets Syst. 211, 1–14 (2013)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Multi-adjoint algebras versus extended-order algebras. Appl. Math. Inf. Sci. 9(2L), 365–372 (2015)
Cornejo, M.E., Medina, J., Ramírez-Poussa, E.: Multi-adjoint algebras versus non-commutative residuated structures. Int. J. Approximate Reasoning 66, 119–138 (2015)
Aguiló, I., Suñer, J., Torrens, J.: New types of contrapositivisation of fuzzy implications with respect to fuzzy negations. Inf. Sci. 322, 223–236 (2015)
Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W.: Fuzzy implications based on semicopulas. Fuzzy Sets Syst. 323, 138–151 (2017)
Massanet, S., Recasens, J., Torrens, J.: Fuzzy implication functions based on powers of continuous t-norms. Int. J. Approximate Reasoning 83, 265–279 (2017)
Qiao, J., Hu, B.Q.: The distributive laws of fuzzy implications over overlap and grouping functions. Inf. Sci. 438, 107–126 (2018)
Zhi, Y., Zhou, X., Li, Q.: Residuated skew lattices. Inf. Sci. 460–461, 190–201 (2018)
Hájek, P.: Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer Academic, Netherlands (1998)
Demirli, K., De Baets, B.: Basic properties of implicators in a residual framework. Tatra Mt. Math. Publ. 16, 31–46 (1999)
Morsi, N.N., Roshdy, E.M.: Issues on adjointness in multiple-valued logics. Inf. Sci. 176, 2886–2909 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cornejo, M.E., Medina-Moreno, J., Ramírez-Poussa, E. (2020). On the Exchange Principle in Adjoint Triples. In: Kóczy, L., Medina-Moreno, J., Ramírez-Poussa, E., Šostak, A. (eds) Computational Intelligence and Mathematics for Tackling Complex Problems. Studies in Computational Intelligence, vol 819. Springer, Cham. https://doi.org/10.1007/978-3-030-16024-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-16024-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16023-4
Online ISBN: 978-3-030-16024-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)