[go: up one dir, main page]

Skip to main content

Abstract

During last few decades, the incidence of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) has increased significantly. In terms of prevalence, GEP-NETs are the second commonest gastrointestinal malignancy after colorectal cancer. Pathologically, these neoplasms range from slowly growing, indolent tumors to more aggressive malignancies. Clinical presentation is quite diverse and contributes to delayed diagnosis. Therefore, 60–80 % cases present with metastatic disease and have unfavorable clinical outcome. Molecular and biologic basis of development, growth, progression, and sensitivity or resistance to emerging therapies is not well understood. Hence, there is an urgent need to characterize these tumors in terms of expression of various molecular targets in the primary vs. metastatic NET tissues, so most promising therapeutically relevant molecular targets can be identified and validated. Similarly, rigorous molecular target expression data sets are required to define rational therapeutic strategies in individual patients. Molecular targets with greatest therapeutic relevance are peptide receptors and receptor tyrosine kinases involved in pathologic angiogenesis in tumor tissues and in tumor growth and progression, along with intracellular targets, like the mammalian target of rapamycin (mTOR). With the implementation of more personalized diagnostic and therapeutic approaches, it is becoming more and more important for diagnostic pathologists to develop and advance expertise in systematic and reproducible evaluation of these molecular targets in human tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schimmack S, Svejda B, Lawrence B, Kidd M, Modlin IM. The diversity and commonalities of gastroenteropancreatic neuroendocrine tumors. Langenbecks Arch Surg. 2011;396(3):273–98.

    Article  PubMed  Google Scholar 

  2. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  3. Wiedenmann B, Pavel M, Kos-Kudla B. From targets to treatments: a review of molecular targets in pancreatic neuroendocrine tumors. Neuroendocrinology. 2011;94(3):177–90.

    Article  CAS  PubMed  Google Scholar 

  4. Metz DC, Jensen RT. Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors. Gastroenterology. 2008;135(5):1469–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar U, Grant M. Somatostatin and somatostatin receptors. Results Probl Cell Differ. 2010;50:137–84.

    CAS  PubMed  Google Scholar 

  6. Patel YC. Molecular pharmacology of somatostatin receptor subtypes. J Endocrinol Invest. 1997;20(6):348–67.

    Article  CAS  PubMed  Google Scholar 

  7. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. N Engl J Med. 1996;334(4):246–54.

    Article  CAS  PubMed  Google Scholar 

  8. Eriksson B. New drugs in neuroendocrine tumors: rising of new therapeutic philosophies? Curr Opin Oncol. 2010;22(4):381–6.

    Article  CAS  PubMed  Google Scholar 

  9. Susini C, Buscail L. Rationale for the use of somatostatin analogs as antitumor agents. Ann Oncol. 2006;17(12):1733–42.

    Article  CAS  PubMed  Google Scholar 

  10. Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB. Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer. 2008;15(3):701–20.

    Article  CAS  PubMed  Google Scholar 

  11. Schonbrunn A. Somatostatin receptors present knowledge and future directions. Ann Oncol. 1999;10 Suppl 2:S17–21.

    Article  PubMed  Google Scholar 

  12. Kulaksiz H, Eissele R, Rossler D, Schulz S, Hollt V, Cetin Y, et al. Identification of somatostatin receptor subtypes 1, 2A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut. 2002;50(1):52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Papotti M, Bongiovanni M, Volante M, Allia E, Landolfi S, Helboe L, et al. Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors. A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch. 2002;440(5):461–75.

    Article  CAS  PubMed  Google Scholar 

  14. Fjallskog ML, Ludvigsen E, Stridsberg M, Oberg K, Eriksson B, Janson ET. Expression of somatostatin receptor subtypes 1 to 5 in tumor tissue and intratumoral vessels in malignant endocrine pancreatic tumors. Med Oncol. 2003;20(1):59–67.

    Article  PubMed  Google Scholar 

  15. Fazio N, Cinieri S, Lorizzo K, Squadroni M, Orlando L, Spada F, et al. Biological targeted therapies in patients with advanced enteropancreatic neuroendocrine carcinomas. Cancer Treat Rev. 2010;36 Suppl 3:S87–94.

    Article  CAS  PubMed  Google Scholar 

  16. Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M, et al. Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol. 2010;28(2):245–55.

    Article  CAS  PubMed  Google Scholar 

  17. Tang C, Biemond I, Lamers CB. Expression of peptide receptors in human endocrine tumours of the pancreas. Gut. 1997;40(2):267–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reubi JC, Waser B, Gugger M, Friess H, Kleeff J, Kayed H, et al. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue. Gastroenterology. 2003;125(1):98–106.

    Article  CAS  PubMed  Google Scholar 

  19. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2003;30(5):781–93.

    Article  CAS  Google Scholar 

  20. Shah T, Hochhauser D, Frow R, Quaglia A, Dhillon AP, Caplin ME. Epidermal growth factor receptor expression and activation in neuroendocrine tumours. J Neuroendocrinol. 2006;18(5):355–60.

    Article  CAS  PubMed  Google Scholar 

  21. Corbo V, Beghelli S, Bersani S, Antonello D, Talamini G, Brunelli M, et al. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries. Ann Oncol. 2012;23(1):127–34.

    Article  CAS  PubMed  Google Scholar 

  22. Di Florio A, Sancho V, Moreno P, Delle Fave G, Jensen RT. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor. Biochim Biophys Acta. 2013;1833(3):573–82.

    Article  PubMed  Google Scholar 

  23. Wulbrand U, Wied M, Zofel P, Goke B, Arnold R, Fehmann H. Growth factor receptor expression in human gastroenteropancreatic neuroendocrine tumours. Eur J Clin Invest. 1998;28(12):1038–49.

    Article  CAS  PubMed  Google Scholar 

  24. Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Pathol. 2005;18(10):1329–35.

    Article  CAS  PubMed  Google Scholar 

  25. Srivastava A, Alexander J, Lomakin I, Dayal Y. Immunohistochemical expression of transforming growth factor alpha and epidermal growth factor receptor in pancreatic endocrine tumors. Hum Pathol. 2001;32(11):1184–9.

    Article  CAS  PubMed  Google Scholar 

  26. Srirajaskanthan R, Shah T, Watkins J, Marelli L, Khan K, Caplin ME. Expression of the HER-1-4 family of receptor tyrosine kinases in neuroendocrine tumours. Oncol Rep. 2010;23(4):909–15.

    Article  CAS  PubMed  Google Scholar 

  27. Bergmann F, Breinig M, Hopfner M, Rieker RJ, Fischer L, Kohler C, et al. Expression pattern and functional relevance of epidermal growth factor receptor and cyclooxygenase-2: novel chemotherapeutic targets in pancreatic endocrine tumors? Am J Gastroenterol. 2009;104(1):171–81.

    Article  CAS  PubMed  Google Scholar 

  28. Fjallskog ML, Lejonklou MH, Oberg KE, Eriksson BK, Janson ET. Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. Clin Cancer Res. 2003;9(4):1469–73.

    PubMed  Google Scholar 

  29. Kostoula V, Khan K, Savage K, Stubbs M, Quaglia A, Dhillon AP, et al. Expression of c-kit (CD117) in neuroendocrine tumours – a target for therapy? Oncol Rep. 2005;13(4):643–7.

    CAS  PubMed  Google Scholar 

  30. Lankat-Buttgereit B, Horsch D, Barth P, Arnold R, Blocker S, Goke R. Effects of the tyrosine kinase inhibitor imatinib on neuroendocrine tumor cell growth. Digestion. 2005;71(3):131–40.

    Article  CAS  PubMed  Google Scholar 

  31. Ferrari L, Della Torre S, Collini P, Martinetti A, Procopio G, De Dosso S, et al. Kit protein (CD117) and proliferation index (Ki-67) evaluation in well and poorly differentiated neuroendocrine tumors. Tumori. 2006;92(6):531–5.

    CAS  PubMed  Google Scholar 

  32. Zhang L, Smyrk TC, Oliveira AM, Lohse CM, Zhang S, Johnson MR, et al. KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol. 2009;33(10):1562–9.

    Article  PubMed  Google Scholar 

  33. Di Florio A, Capurso G, Milione M, Panzuto F, Geremia R, Delle Fave G, et al. Src family kinase activity regulates adhesion, spreading and migration of pancreatic endocrine tumour cells. Endocr Relat Cancer. 2007;14(1):111–24.

    Article  PubMed  Google Scholar 

  34. Capurso G, Di Florio A, Sette C, Delle Fave G. Signalling pathways passing Src in pancreatic endocrine tumours: relevance for possible combined targeted therapies. Neuroendocrinology. 2013;97(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  35. Efeyan A, Sabatini DM. mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol. 2010;22(2):169–76.

    Article  CAS  PubMed  Google Scholar 

  36. Oberg K, Casanovas O, Castano JP, Chung D, Delle Fave G, Denefle P, et al. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res. 2013;19(11):2842–9.

    Article  CAS  PubMed  Google Scholar 

  37. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Ignat A, Axiotis CA. Differential expression of the PTEN tumor suppressor protein in fetal and adult neuroendocrine tissues and tumors: progressive loss of PTEN expression in poorly differentiated neuroendocrine neoplasms. Appl Immunohistochem Mol Morphol. 2002;10(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  40. Francalanci P, Diomedi-Camassei F, Purificato C, Santorelli FM, Giannotti A, Dominici C, et al. Malignant pancreatic endocrine tumor in a child with tuberous sclerosis. Am J Surg Pathol. 2003;27(10):1386–9.

    Article  PubMed  Google Scholar 

  41. Merritt 2nd JL, Davis DM, Pittelkow MR, Babovic-Vuksanovic D. Extensive acrochordons and pancreatic islet-cell tumors in tuberous sclerosis associated with TSC2 mutations. Am J Med Genet A. 2006;140(15):1669–72.

    Article  PubMed  Google Scholar 

  42. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24):8573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Perren A, Wiesli P, Schmid S, Montani M, Schmitt A, Schmid C, et al. Pancreatic endocrine tumors are a rare manifestation of the neurofibromatosis type 1 phenotype: molecular analysis of a malignant insulinoma in a NF-1 patient. Am J Surg Pathol. 2006;30(8):1047–51.

    Article  PubMed  Google Scholar 

  44. Yao JC. Neuroendocrine tumors. Molecular targeted therapy for carcinoid and islet-cell carcinoma. Best Pract Res Clin Endocrinol Metab. 2007;21(1):163–72.

    Article  CAS  PubMed  Google Scholar 

  45. Capdevila J, Salazar R, Halperin I, Abad A, Yao JC. Innovations therapy: mammalian target of rapamycin (mTOR) inhibitors for the treatment of neuroendocrine tumors. Cancer Metastasis Rev. 2011;30 Suppl 1:27–34.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, et al. PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest. 2007;117(3):730–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008;118(9):3065–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101.

    Article  CAS  PubMed  Google Scholar 

  49. Pavel ME, Hainsworth JD, Baudin E, Peeters M, Horsch D, Winkler RE, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  50. Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition. Sci Signal. 2009;2(67):e24.

    Article  Google Scholar 

  51. Karhoff D, Sauer S, Schrader J, Arnold R, Fendrich V, Bartsch DK, et al. Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target. Neuroendocrinology. 2007;85(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  52. Ohike N, Morohoshi T. Immunohistochemical analysis of cyclooxygenase (COX)-2 expression in pancreatic endocrine tumors: association with tumor progression and proliferation. Pathol Int. 2001;51(10):770–7.

    Article  CAS  PubMed  Google Scholar 

  53. Hofer MD, Chang MC, Hirko KA, Rubin MA, Nose V. Immunohistochemical and clinicopathological correlation of the metastasis-associated gene 1 (MTA1) expression in benign and malignant pancreatic endocrine tumors. Mod Pathol. 2009;22(7):933–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lindberg D, Hessman O, Akerstrom G, Westin G. Cyclin-dependent kinase 4 (CDK4) expression in pancreatic endocrine tumors. Neuroendocrinology. 2007;86(2):112–8.

    Article  CAS  PubMed  Google Scholar 

  55. Borka K, Kaliszky P, Szabo E, Lotz G, Kupcsulik P, Schaff Z, et al. Claudin expression in pancreatic endocrine tumors as compared with ductal adenocarcinomas. Virchows Arch. 2007;450(5):549–57.

    Article  CAS  PubMed  Google Scholar 

  56. Hansel DE, House MG, Ashfaq R, Rahman A, Yeo CJ, Maitra A. MAGE1 is expressed by a subset of pancreatic endocrine neoplasms and associated lymph node and liver metastases. Int J Gastrointest Cancer. 2003;33(2–3):141–7.

    Article  PubMed  Google Scholar 

  57. Ghayouri M, Boulware D, Nasir A, Strosberg J, Kvols L, Coppola D. Activation of the serine/threonine protein kinase Akt in enteropancreatic neuroendocrine tumors. Anticancer Res. 2010;30(12):5063–7.

    PubMed  Google Scholar 

  58. Pathak RD, Tran TH, Burshell AL. A case of dopamine agonists inhibiting pancreatic polypeptide secretion from an islet cell tumor. J Clin Endocrinol Metab. 2004;89(2):581–4.

    Article  CAS  PubMed  Google Scholar 

  59. Lemmer K, Ahnert-Hilger G, Hopfner M, Hoegerle S, Faiss S, Grabowski P, et al. Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life Sci. 2002;71(6):667–78.

    Article  CAS  PubMed  Google Scholar 

  60. Grossrubatscher E, Veronese S, Ciaramella PD, Pugliese R, Boniardi M, De Carlis L, et al. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors. Cancer Biol Ther. 2008;7(12):1970–8.

    Article  PubMed  Google Scholar 

  61. Pivonello R, Ferone D, de Herder WW, Faggiano A, Bodei L, de Krijger RR, et al. Dopamine receptor expression and function in corticotroph ectopic tumors. J Clin Endocrinol Metab. 2007;92(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  62. Srirajaskanthan R, Watkins J, Marelli L, Khan K, Caplin ME. Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology. 2009;89(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  63. Srirajaskanthan R, Dancey G, Hackshaw A, Luong T, Caplin ME, Meyer T. Circulating angiopoietin-2 is elevated in patients with neuroendocrine tumours and correlates with disease burden and prognosis. Endocr Relat Cancer. 2009;16(3):967–76.

    Article  CAS  PubMed  Google Scholar 

  64. Kidd M, Drozdov I, Joseph R, Pfragner R, Culler M, Modlin I. Differential cytotoxicity of novel somatostatin and dopamine chimeric compounds on bronchopulmonary and small intestinal neuroendocrine tumor cell lines. Cancer. 2008;113(4):690–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Abbreviations

Akt Protein kinase B

AKT2 kt/mTOR pathway gene

ALDH+ Aldehyde dehydrogenase positive

ATM Protein kinase

BON Pancreatic neuroendocrine tumors cell line

c-Kit Stem cell growth factor receptor

CK19 Cytokeratin 19

CM Pancreatic neuroendocrine tumors cell line

CSC Cancer stem cells

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

ErbB-1 Epidermal growth factor receptor

ERK Extracellular-regulated kinase

ERK1 Extracellular-regulated kinase 1

ERK2 Extracellular-regulated kinase 2

FGFR3 Fibroblast growth factor receptor 3

FLT1 EGFR gene

FRAP1-mTOR Akt/mTOR pathway gene

GEP-NET Gastroenteropancreatic neuroendocrine tumor

GI Gastrointestinal

HER Human epidermal growth factor receptor

HER2 Human epidermal growth factor receptor 2

HER3 Human epidermal growth factor receptor 3

IHC Immunohistochemistry/immunohistochemical

KIT c-Kit encoding gene

MAPK Mitogen-activated protein kinase

MMP Matrix metalloproteinases

mTOR Mammalian target of rapamycin

mTOR Mammalian target of rapamycin

NET Neuroendocrine tumor

NF1 Neurofibromatosis type 1

PDGFR-alpha Platelet-derived growth factor receptor-alpha

PDPK1 Akt/mTOR pathway gene

P-EGFR Phosphorylated EGFR

PIK3CA Akt/mTOR pathway gene

PI3K Phosphoinositide-3-kinase

PKB Protein kinase B

PMET Phosphorylated MET

PNET Primitive neuroendocrine tumor

PTEN Phosphatase and tensin homolog

QGP-1 Pancreatic neuroendocrine tumors cell line

qPCR Quantitative polymerase chain reaction

Rin-14B Pancreatic delta cell line

RPS6K1 Akt/mTOR pathway gene

RTK Receptor tyrosine kinase

SCF Stem cell factor

SFK Sarcoma family of kinases

siRNA Small interfering RNA

Src Sarcoma

SSA Somatostatin analog

SSTR Somatostatin receptors

SSTR2 Somatostatin receptor 2

SSTR5 Somatostatin receptor 5

STK11 Akt/mTOR pathway gene

TGFα Transforming growth factor-alpha

TSC1 Tuberous sclerosis complex 1 gene

TSC2 Tuberous sclerosis complex 2 gene

VEGFR1 VEGF receptor

VIP Vasoactive intestinal peptide

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aejaz Nasir MD, MPhil, FCAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sheikh, U., Muhammad, J., Coppola, D., Nasir, A. (2016). Molecular Targets in Human Neuroendocrine Tumors. In: Nasir, A., Coppola, D. (eds) Neuroendocrine Tumors: Review of Pathology, Molecular and Therapeutic Advances. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3426-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3426-3_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3424-9

  • Online ISBN: 978-1-4939-3426-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics