[go: up one dir, main page]

Skip to main content

The MULTICOM Protein Tertiary Structure Prediction System

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

With the expansion of genomics and proteomics data aided by the rapid progress of next-generation sequencing technologies, computational prediction of protein three-dimensional structure is an essential part of modern structural genomics initiatives. Prediction of protein structure through understanding of the theories behind protein sequence–structure relationship, however, remains one of the most challenging problems in contemporary life sciences. Here, we describe MULTICOM, a multi-level combination technique, intended to predict moderate- to high-resolution structure of a protein through a novel approach of combining multiple sources of complementary information derived from the experimentally solved protein structures in the Protein Data Bank. The MULTICOM web server is freely available at http://sysbio.rnet.missouri.edu/multicom_toolbox/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anfinsen CB, Haber E, Sela M, White F Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47(9):1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5(4):823

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Bujnicki JM (2005) Protein‐structure prediction by recombination of fragments. Chembiochem 7(1):19–27

    Article  Google Scholar 

  4. Krieger E, Nabuurs SB, Vriend G (2003) Homology modeling. Methods Biochem Anal 44:509–524

    CAS  PubMed  Google Scholar 

  5. Moult J, Pedersen JT, Judson R, Fidelis K (2004) A large‐scale experiment to assess protein structure prediction methods. Proteins 23(3):ii–v

    Article  Google Scholar 

  6. Cheng J (2008) A multi-template combination algorithm for protein comparative modeling. BMC Struct Biol 8(1):18

    Article  PubMed Central  PubMed  Google Scholar 

  7. Fischer D (2003) 3D‐SHOTGUN: a novel, cooperative, fold‐recognition meta‐predictor. Proteins Struct Funct Bioinf 51(3):434–441

    Article  CAS  Google Scholar 

  8. Sali A, Blundell T (1994) Comparative protein modelling by satisfaction of spatial restraints. Proteins 64:C86

    Google Scholar 

  9. Wang Z, Eickholt J, Cheng J (2010) MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics 26(7):882–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng J, Wang Z, Tegge AN, Eickholt J (2009) Prediction of global and local quality of CASP8 models by MULTICOM series. Proteins 77(S9):181–184

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Tegge AN, Cheng J (2008) Evaluating the absolute quality of a single protein model using structural features and support vector machines. Proteins 75(3):638–647

    Article  Google Scholar 

  12. Moult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A (2009) Critical assessment of methods of protein structure prediction: Round VIII. Proteins 77(S9):1–4

    Article  CAS  PubMed  Google Scholar 

  13. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  14. LLC DS The PyMOL molecular graphics system. http://pymol.sourceforge.net/

  15. Sayle R (1994) RasMol v2. 5-Molecular visualisation program

    Google Scholar 

  16. Jmol: an open-source Java viewer for chemical structures in 3D. http://jmol.sourceforge.net/. Accessed 10 Dec 2008

  17. Zhang Y, Skolnick J (2004) Scoring function for automated assessment of protein structure template quality. Proteins 57(4):702–710

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Deng X, Eickholt J, Cheng J (2013) Designing and benchmarking the MULTICOM protein structure prediction system. BMC Struct Biol 13:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  22. Biegert A, Söding J (2009) Sequence context-specific profiles for homology searching. Proc Natl Acad Sci USA 106(10):3770–3775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hughey R, Krogh A (1995) SAM: sequence alignment and modeling software system. In: Technical Report: UCSC-CRL-95-07. University of California at Santa Cruz

    Google Scholar 

  24. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Suppl 2):W29–W37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Soding J, Biegert A, Lupas A (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server Issue):W244–W248

    Article  PubMed Central  PubMed  Google Scholar 

  26. PRC, the profile comparer. http://supfam.org/PRC/

  27. Sadreyev R, Grishin N (2003) COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. J Mol Biol 326(1):317–336

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33(7):2302–2309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhou H, Zhou Y (2005) SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Bioinformatics 21(18):3615–3621

    Article  CAS  PubMed  Google Scholar 

  30. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  31. Cheng J, Wang Z, Eickholt J, Deng X (2011) Recursive protein modeling: a divide and conquer strategy for protein structure prediction and its case study in CASP9. In: Bioinformatics and Biomedicine Workshops (BIBMW). IEEE. p 352–357

    Google Scholar 

  32. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Tegge AN, Cheng J (2009) Evaluating the absolute quality of a single protein model using structural features and support vector machines. Proteins 75(3):638–647

    Article  CAS  PubMed  Google Scholar 

  34. Cheng J, Randall A, Sweredoski M, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(Web Server Issue):W72–W76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tegge AN, Wang Z, Eickholt J, Cheng J (2009) NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res 37(Suppl 2):W515–W518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cheng J, Baldi P (2005) Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms. Bioinformatics 21(Suppl 1):i75–i84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was supported by an NIH grant R01GM093123 to J.C.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, J. et al. (2014). The MULTICOM Protein Tertiary Structure Prediction System. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics