[go: up one dir, main page]

Skip to main content

Viral Infections and Diabetes

  • Chapter
  • First Online:
Diabetes

Abstract

Type 1 diabetes mellitus (T1DM) is a multi-factorial autoimmune disease determined by the interaction of genetic, environmental and immunologic factors. One of the environmental risk factors identified by a series of independent studies is represented by viral infection, with strong evidence showing that viruses can indeed infect pancreatic β cells with consequent effects ranging from functional damage to cell death.

In this chapter we review the data obtained both in man and in experimental animal models in support of the potential participation of viral infections to Type 1 diabetes pathogenesis, with a particular emphasis on virus-triggered islet inflammation, β-cell dysfunction and autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 2011; 342:d35.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yin H, Berg AK, Tuvemo T et al. Enterovirus RNA is found in peripheral blood mononuciear cells in a majority of type 1 diabetic children at onset. Diabetes 2002; 51:1964–1971.

    Article  CAS  PubMed  Google Scholar 

  3. Nejentsev S, Howson JM, Walker NM et al. Localization of type 1 diabetes susceptibility to trie MHC class I genes HLA-B and HLA-A. Nature 2007; 450:887–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pugliese A, Zeller M, Fernandez A Jr et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 1997; 15: 293–297.

    Article  CAS  PubMed  Google Scholar 

  5. Concannon P, Rich SS, Nepom GT. Genetics of type la diabetes. N Engl J Med 2009; 360:1646–1654.

    Article  CAS  PubMed  Google Scholar 

  6. Anjos SM, Tessier MC, Polychronakos C. Association of the cytotoxic T-lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. J Clin Endocrinol Metab 2004; 89:6257–6265.

    Article  CAS  PubMed  Google Scholar 

  7. Nejentsev S, Walker N, Riches D et al. Rare valiants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 2009; 324:387–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Field LL, Bonnevie-Nielsen V, Pociot F et al. OAS1 splice site polymorphism controlling antiviral enzyme activity influences susceptibility to type 1 diabetes. Diabetes 2005; 54:1588–1591.

    Article  CAS  PubMed  Google Scholar 

  9. Skarsvik S, Puranen J, Honkanen J et al. Decreased in vitro type 1 immune response against coxsackie virus B4 in children with type 1 diabetes. Diabetes 2006; 55:996–1003.

    Article  CAS  PubMed  Google Scholar 

  10. Dotta F. Censini S, Van Halteren AG et al. Coxsackie B4 virus infection of β cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 2007; 104:5115–5120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sccwaldt S, Thomas HE, Ejrnaes M et al. Virus-induced autoimmune diabetes: most beta cells die through inflammatory cytokines and not perform from autoreactive (anti-viral) cytotoxic T-lymphoeytes. Diabetes 2000; 49:1801–1809.

    Article  Google Scholar 

  12. Lang KS, Rocher M, Junt T et al. Toll-like receptor engagement converts T-cell autoroactivity into overt autoimmune disease. Nat Med 2005; 11:138–145.

    Article  CAS  PubMed  Google Scholar 

  13. Jun HS, Yoon JW. A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev 2003; 19:8–31.

    Article  CAS  PubMed  Google Scholar 

  14. Horwitz MS, Fine C, Ilic A et al. Requirements for viral-mediated autoimmune diabetes: beta-cell damage and immune infiltration. J Autoimmun 2001; 16:211–217.

    Article  CAS  PubMed  Google Scholar 

  15. Horwitz MS, Ilic A, Fine C et al. Presented antigen from damaged pancreatic beta cells activates autoreactive T-cells in virus-mediated autoimmune diabetes. J Clin Invest 2002; 109:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Atkinson MA, Bowman MA, Campbell L et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J Clin Invest 1994; 94:2125–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian J, Lehmann PV, Kaufman DL. T-cell cross-reactivity between coxsackievirus and glutamate decarboxylase is associated with a murine diabetes susceptibility allele. J Exp Med 1994; 180:1979–1984.

    Article  CAS  PubMed  Google Scholar 

  18. Sevilla N, Homann D, Von Herrath M et al. Virus-induced diabetes in atransgenic model: role of cross-reacting viruses and quantitation of effector T-cells needed to cause disease. J Virol 2000; 74:3284–3292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christen U, Edelmann KH, McGavorn DB et al. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 2004; 114:1290–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grieco FA, Vendrame F, Spagnuolo I et al. Innate immunity and the pathogenesis of type 1 diabetes. Semin Immunopathol 2011; 33:57–66.

    Article  CAS  PubMed  Google Scholar 

  21. Verdijk RM, Mutis T, Esendam B et al. Polyriboinosinic polyribocytidylic acid (poly (I:C)) induces stable maturation of functionally active human dendritic cells. J Immunol 1999; 163:57–61.

    CAS  PubMed  Google Scholar 

  22. Mattei F, Schiavoni G, Belardelli F et al. IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 2001; 167:1179–1187.

    Article  CAS  PubMed  Google Scholar 

  23. Liu D, Cardozo AK, Darville MI et al. Double-stranded RNA cooperates with interferon-gamma and IL-1 beta to induce both chemokine expression and nuclear factor-kappa B-dependent apoptosis in pancreatic beta-cells: potential mechanisms for viral-induced insulitis and beta-cell death in type 1 diabetes mellitus. Endocrinology 2002; 143:1225–1234.

    Article  CAS  PubMed  Google Scholar 

  24. Blair LA, Heitmeier MR, Scarim AL et al. Double-stranded RNA-dependent protein kinase is not required for double-stranded RNA-induced nitric oxide synthase expression or nuclear factor-kappaB activation by islets. Diabetes 2001; 50:283–290.

    Article  CAS  PubMed  Google Scholar 

  25. Sobel DO, Goyal D, Ahvazi B et al. Low dose poly I:C prevents diabetes in the diabetes prone BB rat. J Autoimmun 1998; 11:343–352.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J Immunol 2007; 178:2141–2147.

    Article  CAS  PubMed  Google Scholar 

  27. Jaïdane H, Sané F, Gharbi J et al. Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 2009; 25:591–603.

    Article  PubMed  CAS  Google Scholar 

  28. Hober D, Sauter P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat Rev Endocrinol 2010; 6:279–289.

    Article  PubMed  Google Scholar 

  29. Holmberg R, Klitz W, Blixt M et al. Antiviral treatments reduce severity of diabetes in Ljungan virus-infected CD-1 mice and delay onset in diabetes-prone BB rats. Microbiol Immunol 2009; 53:567–572.

    Article  CAS  PubMed  Google Scholar 

  30. Tapia G, Cinek O, Rasmussen T et al. Longitudinal study of Parechovirus infection in infancy and risk of repeated positivity for multiple islet autoantibodies: the MIDIA Study. Pediatr Diabetes 2011; 12:58–62.

    Article  PubMed  Google Scholar 

  31. Van der Werf N, Kroese FG, Rozing J et al. Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 2007; 23:169–183.

    Article  PubMed  CAS  Google Scholar 

  32. Menser MA, Forrest JM, Bransby RD. Rubella infection and diabetes mellitus. Lancet 1978; 1:57–60.

    Article  CAS  PubMed  Google Scholar 

  33. Serreze DV, Leiter EH, Kuff EL et al. Molecular mimicry between insulin and retroviral antigen p73. Development of cross-reactive autoantibodies in sera of NOD and C57BL/KsJ db/db mice. Diabetes 1988; 37:351–358.

    Article  CAS  PubMed  Google Scholar 

  34. Conrad B, Weissmahr RN, Boni Jetai. Ahuman endogenous retroviral superantigen as candidate autoimmune gene in type 1 diabetes. Cell 1997; 90:303–313.

    Article  CAS  PubMed  Google Scholar 

  35. Wetzel JD, Barton ES, Chappell JD et al. Reovirus delays diabetes onset but does not prevent insulitis in nonobese diabetic mice. J Virol 2006; 80:3078–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Graham KL, O’Donnell JA, Tan Y et al. Rotavirus infection of infant and young adult nonobese diabetic mice involves extraintestinal spread and delays diabetes onset. J Virol 2007; 81:6446–6458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham KL, Sanders N, Tan Y et al. Rotavirus infection accelerates type 1 diabetes in mice with established insulitis. J Virol 2008; 82:6139–6149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coulson BS, Witterick PD, Tan Y et al. Growth of rotaviruses in primary pancreatic cells. J Virol 2002; 76:9537–9544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Honeyman MC, Coulson BS, Stone NJ. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 2000; 49:1319–1323.

    Article  CAS  PubMed  Google Scholar 

  40. Munakata Y, Kodera T, Saito T et al. Rheumatoid arthritis, type 1 diabetes, and Graves’ disease after acute parvovirus bl9 infection. Lancet 2005; 366:780.

    Article  PubMed  Google Scholar 

  41. Tirabassi RS, Guberski DL, Blankcnhom EP et al. Infection with viruses from several families triggers autoimmune diabetes in LEW*1WR1 rats: prevention of diabetes by maternal immunization. Diabetes 2010; 59:110–118.

    Article  CAS  PubMed  Google Scholar 

  42. Oldstone MB. Prevention of type I diabetes in nonobese diabetic mice by virus infection. Science 1988; 239:500–502.

    Article  CAS  PubMed  Google Scholar 

  43. Roivainen M, Klingel K. Virus infections and type 1 diabetes risk. Curr Diab Rep 2010; 10:350–356.

    Article  CAS  PubMed  Google Scholar 

  44. Kitamura N, Semler BL, Rothberg PG et al. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 1981; 291:547–553.

    Article  CAS  PubMed  Google Scholar 

  45. Tauriainen S, Salminen H, Hyöty. Can enteroviruses cause type 1 diabetes? Ann N Y Acad Sci 2003; 1005:13–22.

    Article  PubMed  Google Scholar 

  46. Jaïdane H, Hober D. Role of coxsackievirus B4 in the pathogenesis of type 1 diabetes. Diabetes Metab 2008; 34:537–548.

    Article  PubMed  CAS  Google Scholar 

  47. Webb SR, Loria RM, Madge GE et al. Susceptibility of mice to group B coxsackie virus is influenced by the diabetic gene. J Exp Med 1976; 143:1239–1248.

    Article  CAS  PubMed  Google Scholar 

  48. Loria RM, Montgomery LB, Corey LA et al. Influence of diabetes mellitus heredity on susceptibility to coxsackievirus B4. Arch Virol 1984; 81:251–262.

    Article  CAS  PubMed  Google Scholar 

  49. Loria RM, Montgomery LB, Turtle-Fuller N et al. Genetic predisposition to diabetes mellitus is associated with impaired humoral immunity to coxsackievirus B4. Diabetes Res Clin Pract 1986; 2:91–96.

    Article  CAS  PubMed  Google Scholar 

  50. Yoon JW, London WT, Curfman BL et al. Coxsackie virus B4 produces transient diabetes in nonhuman primates. Diabetes 1986; 35:712–716.

    Article  CAS  PubMed  Google Scholar 

  51. Elshebani A, Olsson A, Westman J et al. Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res 2007; 124:193–203.

    Article  CAS  PubMed  Google Scholar 

  52. Flodström M, Tsai D, Fine C et al. Diabetogenic potential of human pathogens uncovered in experimentally permissive beta-cells. Diabetes 2003; 52:2025–2034.

    Article  PubMed  Google Scholar 

  53. Härkönen T, Lankinen H, Davydova B et al. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J Med Virol 2002; 66:340–350.

    Article  PubMed  CAS  Google Scholar 

  54. Fujinami RS, von Herrath MG, Christen U et al. Molecular mimicry, by Stander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19:80–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gronski MA, Boulter JM, Moskophidis D et al. TCR affinity and negative regulation limit autoimmunity. Nat Med 2004; 10:1234–1239.

    Article  CAS  PubMed  Google Scholar 

  56. Horwitz MS, Bradley LM, Harbertson J et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4:781–785.

    Article  CAS  PubMed  Google Scholar 

  57. Serreze DV, Ottendorfer EW, Ellis TM et al. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 2000; 49:708–711.

    Article  CAS  PubMed  Google Scholar 

  58. Drescher KM, Kono K, Bopegamage S et al. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 2004; 329:381–394.

    Article  CAS  PubMed  Google Scholar 

  59. Tracy S, Drescher KM, Chapman NM et al. Toward testing the hypothesis that group B coxsackieviruses (CVB)trigger insulin-dependent diabetes: inoculatingnonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 2002; 76:12097–12111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jun HS. Yoon CS, Zbytnuik L et al. The role of macrophages in T-cell-mediated autoimmune diabetes in nonobese diabetic mice. J Exp Med 1999; 189:347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Horwitz MS, Ilic A, Fine C et al. Coxsackieviral-mediated diabetes: induction requires antigen-presenting cells and is accompanied by phagocytosis of beta cells. Clin Immunol 2004; 110:134–144.

    Article  CAS  PubMed  Google Scholar 

  62. Serreze DV. Wasserfall C, Ottendorfer EW et al. Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and gamma interferon. J Virol 2005; 79:1045–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Filippi CM, Ehrhardt K, Estes EA et al. TLR2 signaling improves immunoregulation to prevent type 1 diabetes. Eur J Immunol 2011; 41:1399–1409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Filippi CM, Estes EA, Oldham JE et al. Immuuoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J Clin Invest 2009; 119:1515–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berger MM, See DM, Aymard M et al. Demonstration of persistent entero virus in the pancreas of diabetic mice by in situ polymerase chain reaction. Clin Diagn Virol 1998; 9:141–143.

    Article  CAS  PubMed  Google Scholar 

  66. See DM, Tilles JG. Pathogenesis of virus-induced diabetes in mice. J Infect Dis 1995; 171:1131–1138.

    Article  CAS  PubMed  Google Scholar 

  67. Richardson S J, Willcox A, Bone AJ et al. The prevalence of enteroviral capsid protein VP-1 immunostainiug in pancreatic islets in human type 1 diabetes. Diabetologia 2009; 52:1143–1151.

    Article  CAS  PubMed  Google Scholar 

  68. Ylipaasto P, Klingel K, Lindberg AM et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 2004; 47:225–239.

    Article  CAS  PubMed  Google Scholar 

  69. Szopa TM, Dronfield DM, Ward T et al. In vivo infection of mice with Coxsackie B4 virus induces long-term functional changes in pancreatic islets with minimal alteration in blood glucose. Diabet Med 1989; 6:314–319.

    Article  CAS  PubMed  Google Scholar 

  70. Richer MJ, Lavaliée DJ, Shanina I et al. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One 2009; 4:e4127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mukherjee A, Morosky SA, Delorme-Axford E et al. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 2011; 7:e1001311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guberski DL, Thomas VA, Shek WR et al. Induction of type I diabetes by Kilham’srat virus in diabetes-resistant BB/Wor rats. Science 1991; 254:1010–1013.

    Article  CAS  PubMed  Google Scholar 

  73. Blankenhorn EP, Rodemich L, Martin-Fernandez C et al. The rat diabetes susceptibility locus Iddm4 and at least one additional gene are required for autoimmune diabetes induced by viral infection. Diabetes 2005; 54:1233–1237

    Article  CAS  PubMed  Google Scholar 

  74. Brown DW, Welsh RM, Like AA. Infection of peripancreatic lymph nodes but not islets precedes Kilham rat virus-induced diabetes in BB/Wor rats. J Virol 1993; 67:5873–5878.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chung YH, Jun HS, Son M et al. Cellular andmolecularmechanism for Kilhamrat virus-induced autoimmune diabetes in DR-BB rats. J Immunol 2000; 165:2866–2876.

    Article  CAS  PubMed  Google Scholar 

  76. Zipris D, Hillebrands JH, Welsh RM et al. Infections that induce autoimmune diabetes in BBDR rats modulate CD4+CD25+ T-cell populations. J Immunol 2003; 170:3592–3602.

    Article  CAS  PubMed  Google Scholar 

  77. Mendez II, Chung YH, Tun HS et al. Immunoregulatory role of nitric oxide in Kilham rat virus-induced autoimmune diabetes in DR-BB rats. J Immunol 2004; 173:1327–1335.

    Article  CAS  PubMed  Google Scholar 

  78. Zipris D, Lien E, Xie JX et al. TLR activation synergizes with Kilham rat viras infection to induce diabetes in BBDR rats. J Immunol 2005; 174:131–142.

    Article  CAS  PubMed  Google Scholar 

  79. Zipris D, Lien E, Nair A et al. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J Immunol 2007; 178:693–701.

    Article  CAS  PubMed  Google Scholar 

  80. Wolter TR, Wong R, Sarkar SA et al. DNA microarray analysis for the identification of innate immune pathways implicated in virus-induced autoimmune diabetes. Clin Immunol 2009; 132:103–115.

    Article  CAS  PubMed  Google Scholar 

  81. Hillebrands JL, van der Werf N, Klatter FA et al. Role of peritoneal macrophages in cytomegalovirus-induced acceleration of autoimmune diabetes in BB-rats. Clin Dev Immunol 2003; 10:133–139.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mordes JP, Bortell R, Doukas J et al. The BB/Wor rat and the balance hypothesis of autoimmunity. Diabetes Metab Rev 1996; 12:103–109.

    Article  CAS  PubMed  Google Scholar 

  83. Mordes JP, Guberski DL, Leif JH et al. LEW.1WR1 rats develop autoimmune diabetes spontaneously and in response to environmental perturbation. Diabetes 2005; 54:2727–2733.

    Article  CAS  PubMed  Google Scholar 

  84. Hermann R, Knip M, Veijola R et al. Temporal changes in the frequencies of HLA genotypes in patients with Type 1 diabetes—indication of an increased environmental pressure? Diabetologia 2003; 46:420–425.

    Article  CAS  PubMed  Google Scholar 

  85. Fourlanos S, Varney MD, Tait BD et al. The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 2003; 31:1546–1549.

    Article  Google Scholar 

  86. DIAMOND Project Group, Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet Med 2006; 23:857–866.

    Article  Google Scholar 

  87. Viskari H, Paronen J, Keskinen P. Humoral beta cell autoimmunity is rare in patients with congenital rubella. Clin Exp Immunol 1978; 133:378–383.

    Article  Google Scholar 

  88. Gamble DR, Kinsley MJ, Fitzgerald MG et al. Viral Antibodies in diabetes mellitus. BMJ 1969; 3:627–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lönnrot M, Korpela K, Knip M et al. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes 2000; 49:1314–1318.

    Article  PubMed  Google Scholar 

  90. Chehadeh W, Weill J, Vantyghem MC et al. Increased level of interferon-alpha in blood of patients with insulin-dcpcndcnt diabetes mellitus: relationship with coxsackievirus B infection. J Infect Dis 2000; 181:1929–1939.

    Article  CAS  PubMed  Google Scholar 

  91. Chehadeh W. Kerr-Conte J, Pattou F et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J Virol 2000; 74:10153–10164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yoon JW, Austin M, Onodera T et al. Isolation of a viras from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 1979; 300:1173–1179.

    Article  CAS  PubMed  Google Scholar 

  93. Eizirik DL, Mandrup-Poulsen T. A choice of death-the signal transduction of immune mediated beta-cell apoptosis. Diabetologia 2001; 44:2115–2133.

    Article  CAS  PubMed  Google Scholar 

  94. Ylipaasto P, Kutlu B, Rasilainen S et al. Global profiling of coxsakievirus-and cytokine-induced gene expression in human pancreatic islets. Diabetologia 2005; 48:1510–1522.

    Article  CAS  PubMed  Google Scholar 

  95. Berg AK, Tuvemo T, Frisk G. Enterovirus markers and serum CXCL10 in children with type 1 diabetes. J Med Virol 2010; 82:1594–1599.

    Article  CAS  PubMed  Google Scholar 

  96. Vreugdenhil GR, Geluk A, Ottenhoff TH et al. Molecular mimicry in diabetes mellitus: the homologous domain in coxsackie B virus protein 2C and islet autoantigen GAD65 is highly conserved in the coxsackie B-like enterovirases and binds to the diabetes associated HLA-DR3 molecule. Diabetologia 1998; 41:40–46.

    Article  CAS  PubMed  Google Scholar 

  97. Härkönen T, Lankincn H, Davydova B et al. Enterovirus infection can induce immune responses that cross-react with beta-cell autoantigen tyrosine phosphatase IA-2/IAR. J Med Virol 2002; 66:340–350.

    Article  PubMed  CAS  Google Scholar 

  98. Honeyman MC, Stone NL, Falk BA et al. Evidence for molecular mimicry between human T-cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 2010; 184:2204–2210.

    Article  CAS  PubMed  Google Scholar 

  99. Wen L, Ley RE, Volchkov PV et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 2008; 455:1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Calcinaro F, Dionisi S, Marinaro M et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia 2005; 48:1565–1575.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Dotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Galleri, L., Sebastiani, G., Vendrame, F., Grieco, F.A., Spagnuolo, I., Dotta, F. (2013). Viral Infections and Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_20

Download citation

Publish with us

Policies and ethics