[go: up one dir, main page]

Skip to main content

Histamine and Microglia

  • Chapter
  • First Online:
The Functional Roles of Histamine Receptors

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 59))

Abstract

Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer’s disease, Parkinson’s disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi N (2005) Cerebral ischemia and brain histamine. Brain Res Brain Res Rev 50:275–286

    Article  CAS  PubMed  Google Scholar 

  • Anwar S, Pons V, Rivest S (2020) Microglia purinoceptor P2Y6: an emerging therapeutic target in CNS diseases. Cell 9:1595

    Article  CAS  Google Scholar 

  • Apolloni S, Fabbrizio P, Amadio S, Volonte C (2016a) Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. J Neuroinflammation 13:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Apolloni S, Fabbrizio P, Parisi C, Amadio S, Volonte C (2016b) Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol Neurobiol 53:518–531

    Article  CAS  PubMed  Google Scholar 

  • Apolloni S, Fabbrizio P, Amadio S, Napoli G, Verdile V, Morello G, Iemmolo R, Aronica E, Cavallaro S, Volonte C (2017) Histamine regulates the inflammatory profile of SOD1-G93A microglia and the histaminergic system is dysregulated in amyotrophic lateral sclerosis. Front Immunol 8:1689

    Article  PubMed  PubMed Central  Google Scholar 

  • Apolloni S, Amadio S, Fabbrizio P, Morello G, Spampinato AG, Latagliata EC, Salvatori I, Proietti D, Ferri A, Madaro L, Puglisi-Allegra S, Cavallaro S, Volonte C (2019) Histaminergic transmission slows progression of amyotrophic lateral sclerosis. J Cachexia Sarcopenia Muscle 10:872–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Askew K, Gomez-Nicola D (2018) A story of birth and death: insights into the formation and dynamics of the microglial population. Brain Behav Immun 69:9–17

    Article  PubMed  Google Scholar 

  • Bader MF, Taupenot L, Ulrich G, Aunis D, Ciesielski-Treska J (1994) Bacterial endotoxin induces [Ca2+]i transients and changes the organization of actin in microglia. Glia 11:336–344

    Article  CAS  PubMed  Google Scholar 

  • Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, Van Wagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on Epidemiology, Prevention Statistics Committee, Stroke Statistics Subcommittee (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139:e56–e528

    Article  PubMed  Google Scholar 

  • Berglund R, Guerreiro-Cacais AO, Adzemovic MZ, Zeitelhofer M, Lund H, Ewing E, Ruhrmann S, Nutma E, Parsa R, Thessen-Hedreul M, Amor S, Harris RA, Olsson T, Jagodic M (2020) Microglial autophagy-associated phagocytosis is essential for recovery from neuroinflammation. Sci Immunol 5:eabb5077

    Article  CAS  PubMed  Google Scholar 

  • Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 85:145–157

    Article  CAS  PubMed  Google Scholar 

  • Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52:404–412

    Article  PubMed  Google Scholar 

  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143

    Article  CAS  PubMed  Google Scholar 

  • Carthy E, Ellender T (2021) Histamine, neuroinflammation and neurodevelopment: a review. Front Neurosci 15:680214

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhen W, Guo T, Zhao Y, Liu A, Rubio JP, Krull D, Richardson JC, Lu H, Wang R (2017) Histamine receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLoS One 12:e0189380

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen G, Luo X, Qadri MY, Berta T, Ji RR (2018) Sex-dependent glial signaling in pathological pain: distinct roles of spinal microglia and astrocytes. Neurosci Bull 34:98–108

    Article  CAS  PubMed  Google Scholar 

  • Chen YN, Sha HH, Wang YW, Zhou Q, Bhuiyan P, Li NN, Qian YN, Dong HQ (2020) Histamine 2/3 receptor agonists alleviate perioperative neurocognitive disorders by inhibiting microglia activation through the PI3K/AKT/FoxO1 pathway in aged rats. J Neuroinflammation 17:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikahisa S, Kodama T, Soya A, Sagawa Y, Ishimaru Y, Sei H, Nishino S (2013) Histamine from brain resident MAST cells promotes wakefulness and modulates behavioral states. PLoS One 8:e78434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chikahisa S, Harada S, Shimizu N, Shiuchi T, Otsuka A, Nishino S, Sei H (2017) Mast cell involvement in glucose tolerance impairment caused by chronic mild stress with sleep disturbance. Sci Rep 7:13640

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtell K, Zhang B, Yue Z (2020) Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11:1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czerner CP, Klos A, Seifert R, Neumann D (2014) Histamine induces chemotaxis and phagocytosis in murine bone marrow-derived macrophages and RAW 264.7 macrophage-like cells via histamine H4-receptor. Inflamm Res 63:239–247

    Article  CAS  PubMed  Google Scholar 

  • Dale HH, Laidlaw PP (1910) The physiological action of beta-iminazolylethylamine. J Physiol 41:318–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das A, Kim SH, Arifuzzaman S, Yoon T, Chai JC, Lee YS, Park KS, Jung KH, Chai YG (2016) Transcriptome sequencing reveals that LPS-triggered transcriptional responses in established microglia BV2 cell lines are poorly representative of primary microglia. J Neuroinflammation 13:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng SL, Chen JG, Wang F (2020) Microglia: a central player in depression. Curr Med Sci 40:391–400

    Article  CAS  PubMed  Google Scholar 

  • Dettori I, Gaviano L, Melani A, Lucarini L, Durante M, Masini E, Pedata F (2018) A selective histamine H4 receptor antagonist, JNJ7777120, is protective in a rat model of transient cerebral ischemia. Front Pharmacol 9:1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014a) Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol 49:1487–1500

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhang X, Dai X, Lu S, Gui B, Jin W, Zhang S, Zhang S, Qian Y (2014b) Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway. J Neuroinflammation 11:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S (2017) Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol 54:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Easton A, Norton J, Goodwillie A, Pfaff DW (2004) Sex differences in mouse behavior following pyrilamine treatment: role of histamine 1 receptors in arousal. Pharmacol Biochem Behav 79:563–572

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Xicoy H, Shen J, Luchetti S, Dai D, Zhou P, Qi XR, Martens GJM, Huitinga I, Swaab DF, Liu C, Shan L (2021) Histamine-4 receptor antagonist ameliorates Parkinson-like pathology in the striatum. Brain Behav Immun 92:127–138

    Article  CAS  PubMed  Google Scholar 

  • Fatoba O, Itokazu T, Yamashita T (2020) Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 144:102–118

    Article  CAS  PubMed  Google Scholar 

  • Ferreira R, Santos T, Goncalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L (2012) Histamine modulates microglia function. J Neuroinflammation 9:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A, Giladi A, Sheban F, Dutertre CA, Pfeifle C, Peri F, Raffo-Romero A, Vizioli J, Matiasek K, Scheiwe C, Meckel S, Matz-Rensing K, van der Meer F, Thormodsson FR, Stadelmann C, Zilkha N, Kimchi T, Ginhoux F, Ulitsky I, Erny D, Amit I, Prinz M (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:1609–1622.e1616

    Article  CAS  PubMed  Google Scholar 

  • Ghi P, Orsetti M, Gamalero SR, Ferretti C (1999) Sex differences in memory performance in the object recognition test. Possible role of histamine receptors. Pharmacol Biochem Behav 64:761–766

    Article  CAS  PubMed  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6:2163–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130

    Article  CAS  PubMed  Google Scholar 

  • Haas HL, Sergeeva OA, Selbach O (2008) Histamine in the nervous system. Physiol Rev 88:1183–1241

    Article  CAS  PubMed  Google Scholar 

  • Han J, Fan Y, Zhou K, Blomgren K, Harris RA (2021) Uncovering sex differences of rodent microglia. J Neuroinflammation 18:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS, Green DR (2019) LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178:536–551.e514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendriksen E, van Bergeijk D, Oosting RS, Redegeld FA (2017) Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev 79:119–133

    Article  CAS  PubMed  Google Scholar 

  • Hino N, Marumo T, Kotani M, Shimazaki T, Kaku-Fukumoto A, Hikichi H, Karasawa JI, Tomishima Y, Komiyama H, Tatsuda E, Nozawa D, Nakamura T, Chaki S (2020) A novel potent and selective histamine H3 receptor antagonist enerisant: in vitro profiles, in vivo receptor occupancy, and wake-promoting and procognitive effects in rodents. J Pharmacol Exp Ther 375:276–285

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Yoshikawa T, Matsuzawa T, Naganuma F, Nakamura T, Miura Y, Mohsen AS, Harada R, Iwata R, Yanai K (2015) Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia 63:1213–1225

    Article  PubMed  Google Scholar 

  • Iida T, Yoshikawa T, Karpati A, Matsuzawa T, Kitano H, Mogi A, Harada R, Naganuma F, Nakamura T, Yanai K (2017) JNJ10181457, a histamine H3 receptor inverse agonist, regulates in vivo microglial functions and improves depression-like behaviours in mice. Biochem Biophys Res Commun 488:534–540

    Article  CAS  PubMed  Google Scholar 

  • Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9

    Article  CAS  PubMed  Google Scholar 

  • Juric DM, Krzan M, Lipnik-Stangelj M (2016) Histamine and astrocyte function. Pharmacol Res 111:774–783

    Article  CAS  PubMed  Google Scholar 

  • Kaiser T, Feng G (2019) Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 6. https://doi.org/10.1523/ENEURO.0448-18.2019

  • Karpati A, Yoshikawa T, Nakamura T, Iida T, Matsuzawa T, Kitano H, Harada R, Yanai K (2018) Histamine elicits glutamate release from cultured astrocytes. J Pharmacol Sci 137:122–128

    Article  CAS  PubMed  Google Scholar 

  • Karpati A, Yoshikawa T, Naganuma F, Matsuzawa T, Kitano H, Yamada Y, Yokoyama M, Futatsugi A, Mikoshiba K, Yanai K (2019) Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci Rep 9:16451

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh Y, Niimi M, Yamamoto Y, Kawamura T, Morimoto-Ishizuka T, Sawada M, Takemori H, Yamatodani A (2001) Histamine production by cultured microglial cells of the mouse. Neurosci Lett 305:181–184

    Article  CAS  PubMed  Google Scholar 

  • Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290.e17

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Song JH (2017) Inhibitory effects of antihistamines, diphenhydramine and chlorpheniramine, on proton currents in BV2 microglial cells. Eur J Pharmacol 798:122–128

    Article  CAS  PubMed  Google Scholar 

  • Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O'Loughlin E, Xu Y, Fanek Z, Greco DJ, Smith ST, Tweet G, Humulock Z, Zrzavy T, Conde-Sanroman P, Gacias M, Weng Z, Chen H, Tjon E, Mazaheri F, Hartmann K, Madi A, Ulrich JD, Glatzel M, Worthmann A, Heeren J, Budnik B, Lemere C, Ikezu T, Heppner FL, Litvak V, Holtzman DM, Lassmann H, Weiner HL, Ochando J, Haass C, Butovsky O (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo N, Shirakawa O, Kuno T, Tanaka C (1987) Antimuscarinic effects of antihistamines: quantitative evaluation by receptor-binding assay. Jpn J Pharmacol 43:277–282

    Article  CAS  PubMed  Google Scholar 

  • Lai AY, Dhami KS, Dibal CD, Todd KG (2011) Neonatal rat microglia derived from different brain regions have distinct activation responses. Neuron Glia Biol 7:5–16

    Article  PubMed  Google Scholar 

  • Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  PubMed  Google Scholar 

  • Lam D, Lively S, Schlichter LC (2017) Responses of rat and mouse primary microglia to pro- and anti-inflammatory stimuli: molecular profiles, K(+) channels and migration. J Neuroinflammation 14:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  • Lenz KM, Pickett LA, Wright CL, Davis KT, Joshi A, McCarthy MM (2018) Mast cells in the developing brain determine adult sexual behavior. J Neurosci 38:8044–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JN, Li XL, He J, Wang JX, Zhao M, Liang XB, Zhao SY, Ma MN, Liu Y, Wang YB, Chen H, Qiao GF, Li BY (2015) Sex- and afferent-specific differences in histamine receptor expression in vagal afferents of rats: a potential mechanism for sexual dimorphism in prevalence and severity of asthma. Neuroscience 303:166–177

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Leak RK, Hu X (2016) Neurotransmitter receptors on microglia. Stroke Vasc Neurol 1:52–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozada A, Munyao N, Sallmen T, Lintunen M, Leurs R, Lindsberg PJ, Panula P (2005) Postischemic regulation of central histamine receptors. Neuroscience 136:371–379

    Article  CAS  PubMed  Google Scholar 

  • Madry C, Kyrargyri V, Arancibia-Carcamo IL, Jolivet R, Kohsaka S, Bryan RM, Attwell D (2018) Microglial ramification, surveillance, and interleukin-1beta release are regulated by the two-pore domain K(+) channel THIK-1. Neuron 97:299–312.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar SC, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, Gold R, Grun D, Priller J, Stadelmann C, Prinz M (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Sankowski R, Staszewski O, Prinz M (2020) Microglia heterogeneity in the single-cell era. Cell Rep 30:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, Zelada Gonzalez F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:aad8670

    Article  PubMed  Google Scholar 

  • Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:380–395.e6

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, Silver R (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36:2347–2359

    Article  PubMed  PubMed Central  Google Scholar 

  • Norenberg W, Hempel C, Urban N, Sobottka H, Illes P, Schaefer M (2011) Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 286:11067–11081

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannell M, Szulzewsky F, Matyash V, Wolf SA, Kettenmann H (2014) The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-gamma, and IL-4. Glia 62:667–679

    Article  PubMed  Google Scholar 

  • Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WL, Stark H, Thurmond RL, Haas HL (2015) International Union of Basic and Clinical Pharmacology. XCVIII. Histamine receptors. Pharmacol Rev 67:601–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennington S, Stutzman D, Sannar E (2021) Pitolisant in an adolescent with Prader-Willi syndrome. J Pediatr Pharmacol Ther 26:405–410

    PubMed  PubMed Central  Google Scholar 

  • Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009373

    Article  PubMed  PubMed Central  Google Scholar 

  • Rangon CM, Schang AL, Van Steenwinckel J, Schwendimann L, Lebon S, Fu T, Chen L, Beneton V, Journiac N, Young-Ten P, Bourgeois T, Maze J, Matrot B, Baburamani AA, Supramaniam V, Mallard C, Trottet L, Edwards AD, Hagberg H, Fleiss B, Li J, Chuang TT, Gressens P (2018) Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain Behav Immun 74:265–276

    Article  CAS  PubMed  Google Scholar 

  • Rocha SM, Saraiva T, Cristovao AC, Ferreira R, Santos T, Esteves M, Saraiva C, Je G, Cortes L, Valero J, Alves G, Klibanov A, Kim YS, Bernardino L (2016) Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J Neuroinflammation 13:137

    Article  PubMed  PubMed Central  Google Scholar 

  • Saika F, Matsuzaki S, Kobayashi D, Ideguchi Y, Nakamura TY, Kishioka S, Kiguchi N (2020) Chemogenetic regulation of CX3CR1-expressing microglia using Gi-DREADD exerts sex-dependent anti-allodynic effects in mouse models of neuropathic pain. Front Pharmacol 11:925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu JK, Kulka M (2021) Decoding mast cell-microglia communication in neurodegenerative diseases. Int J Mol Sci 22:1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlicker E, Malinowska B, Kathmann M, Gothert M (1994) Modulation of neurotransmitter release via histamine H3 heteroreceptors. Fundam Clin Pharmacol 8:128–137

    Article  CAS  PubMed  Google Scholar 

  • Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, Suridjan I, Kennedy JL, Rekkas PV, Houle S, Meyer JH (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat 72:268–275

    Article  Google Scholar 

  • Shan Y, Gao Y, Zhang L, Ma L, Shi Y, Liu X (2019) H4 receptor inhibits lipopolysaccharide-induced NF-kappaB activation by interacting with tumor necrosis factor receptor-associated factor 6. Neuroscience 398:113–125

    Article  CAS  PubMed  Google Scholar 

  • Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “big-bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64:1801–1840

    Article  PubMed  Google Scholar 

  • Silver R, Silverman AJ, Vitkovic L, Lederhendler II (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19:25–31

    Article  CAS  PubMed  Google Scholar 

  • Silver RB, Poonwasi KS, Seyedi N, Wilson SJ, Lovenberg TW, Levi R (2002) Decreased intracellular calcium mediates the histamine H3-receptor-induced attenuation of norepinephrine exocytosis from cardiac sympathetic nerve endings. Proc Natl Acad Sci U S A 99:501–506

    Article  CAS  PubMed  Google Scholar 

  • Stratoulias V, Venero JL, Tremblay ME, Joseph B (2019) Microglial subtypes: diversity within the microglial community. EMBO J 38:e101997

    Article  PubMed  PubMed Central  Google Scholar 

  • Su WJ, Zhang T, Jiang CL, Wang W (2018) Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus. Front Cell Neurosci 12:412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramanian N, Theodore D, Abraham J (1981) Experimental cerebral infarction in primates: regional changes in brain histamine content. J Neural Transm 50:225–232

    Article  CAS  PubMed  Google Scholar 

  • Szakacs Z, Dauvilliers Y, Mikhaylov V, Poverennova I, Krylov S, Jankovic S, Sonka K, Lehert P, Lecomte I, Lecomte JM, Schwartz JC, Group H-Cs (2017) Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 16:200–207

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Thion MS, Garel S (2020) Microglial ontogeny, diversity and neurodevelopmental functions. Curr Opin Genet Dev 65:186–194

    Article  CAS  PubMed  Google Scholar 

  • Tomas-Camardiel M, Rite I, Herrera AJ, de Pablos RM, Cano J, Machado A, Venero JL (2004) Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol Dis 16:190–201

    Article  CAS  PubMed  Google Scholar 

  • Tozaki-Saitoh H, Tsuda M (2019) Microglia-neuron interactions in the models of neuropathic pain. Biochem Pharmacol 169:113614

    Article  CAS  PubMed  Google Scholar 

  • Triggiani M, Petraroli A, Loffredo S, Frattini A, Granata F, Morabito P, Staiano RI, Secondo A, Annunziato L, Marone G (2007) Differentiation of monocytes into macrophages induces the upregulation of histamine H1 receptor. J Allergy Clin Immunol 119:472–481

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  CAS  PubMed  Google Scholar 

  • Vahsen BF, Gray E, Thompson AG, Ansorge O, Anthony DC, Cowley SA, Talbot K, Turner MR (2021) Non-neuronal cells in amyotrophic lateral sclerosis - from pathogenesis to biomarkers. Nat Rev Neurol 17:333–348

    Article  PubMed  Google Scholar 

  • Vedam-Mai V (2021) Harnessing the immune system for the treatment of Parkinson's disease. Brain Res 1758:147308

    Article  CAS  PubMed  Google Scholar 

  • Volonte C, Apolloni S, Sabatelli M (2019) Histamine beyond its effects on allergy: potential therapeutic benefits for the treatment of amyotrophic lateral sclerosis (ALS). Pharmacol Ther 202:120–131

    Article  CAS  PubMed  Google Scholar 

  • Wade AM, Tucker HN (1998) Antioxidant characteristics of L-histidine. J Nutr Biochem 9:308–315

    Article  CAS  Google Scholar 

  • Wang N, Ma J, Liu J, Wang J, Liu C, Wang H, Liu Y, Yan H, Jiang S (2019) Histamine H3 receptor antagonist enhances neurogenesis and improves chronic cerebral hypoperfusion-induced cognitive impairments. Front Pharmacol 10:1583

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Taguchi Y, Hayashi H, Tanaka J, Shiosaka S, Tohyama M, Kubota H, Terano Y, Wada H (1983) Evidence for the presence of a histaminergic neuron system in the rat brain: an immunohistochemical analysis. Neurosci Lett 39:249–254

    Article  CAS  PubMed  Google Scholar 

  • Xia P, Logiacco F, Huang Y, Kettenmann H, Semtner M (2021) Histamine triggers microglial responses indirectly via astrocytes and purinergic signaling. Glia 69(9):2291–2304

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Ge X, Ma Y, Tang J, Wang Y, Zhu Y, Gao C, Pan S (2020) Clemastine improves hypomyelination in rats with hypoxic-ischemic brain injury by reducing microglia-derived IL-1beta via P38 signaling pathway. J Neuroinflammation 17:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang X, Qian Q, Wang Y, Dong H, Li N, Qian Y, Jin W (2018) Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammation 15:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Yoshikawa T, Naganuma F, Kikkawa T, Osumi N, Yanai K (2020) Chronic brain histamine depletion in adult mice induced depression-like behaviours and impaired sleep-wake cycle. Neuropharmacology 175:108179

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakamura T, Shibakusa T, Sugita M, Naganuma F, Iida T, Miura Y, Mohsen A, Harada R, Yanai K (2014) Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice. J Nutr 144:1637–1641

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa T, Nakamura T, Yanai K (2019) Histamine N-methyltransferase in the brain. Int J Mol Sci 20:737

    Article  CAS  PubMed Central  Google Scholar 

  • Yoshikawa T, Nakamura T, Yanai K (2021) Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol 178:750–769

    Article  CAS  PubMed  Google Scholar 

  • Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157:24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S (2019) Microglial activation after ischaemic stroke. Stroke Vasc Neurol 4:71–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao XF, Alam MM, Liao Y, Huang T, Mathur R, Zhu X, Huang Y (2019) Targeting microglia using Cx3cr1-Cre lines: revisiting the specificity. eNeuro 6. https://doi.org/10.1523/ENEURO.0114-19.2019

  • Zhou P, Homberg JR, Fang Q, Wang J, Li W, Meng X, Shen J, Luan Y, Liao P, Swaab DF, Shan L, Liu C (2019) Histamine-4 receptor antagonist JNJ7777120 inhibits pro-inflammatory microglia and prevents the progression of Parkinson-like pathology and behaviour in a rat model. Brain Behav Immun 76:61–73

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Qu C, Lu X, Zhang S (2014) Activation of microglia by histamine and substance P. Cell Physiol Biochem 34:768–780

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Yoshikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iida, T., Yanai, K., Yoshikawa, T. (2022). Histamine and Microglia. In: Yanai, K., Passani, M.B. (eds) The Functional Roles of Histamine Receptors. Current Topics in Behavioral Neurosciences, vol 59. Springer, Cham. https://doi.org/10.1007/7854_2022_322

Download citation

Publish with us

Policies and ethics