Skip to main content
  • Bar Harbor, United States

Aamir Zuberi

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation... more
Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre–messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3′ splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2–dependent lysosome trafficking in TDP-43–deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.
Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the... more
Multiple sulfatase deficiency (MSD) is an ultrarare lysosomal storage disorder due to deficiency of all known sulfatases. MSD is caused by mutations in the Sulfatase Modifying Factor 1 (SUMF1) gene encoding the enzyme responsible for the post‐translational modification and activation of all sulfatases. Most MSD patients carry hypomorph SUMF1 variants resulting in variable degrees of residual sulfatase activities. In contrast, Sumf1 null mice with complete deficiency in all sulfatase enzyme activities, have very short lifespan with significant pre‐wean lethality, owing to a challenging preclinical model. To overcome this limitation, we genetically engineered and characterized in mice two commonly identified patient‐based SUMF1 pathogenic variants, namely p.Ser153Pro and p.Ala277Val. These pathogenic missense variants correspond to variants detected in patients with attenuated MSD presenting with partial‐enzyme deficiency and relatively less severe disease. These novel MSD mouse model...
The human mRNA most affected by TDP-43 loss-of-function is transcribed from theSTMN2gene and encodes stathmin-2 (also known as SCG10), whose loss is a neurodegenerative disease hallmark. Here using multiplein vivoapproaches, including... more
The human mRNA most affected by TDP-43 loss-of-function is transcribed from theSTMN2gene and encodes stathmin-2 (also known as SCG10), whose loss is a neurodegenerative disease hallmark. Here using multiplein vivoapproaches, including transient antisense oligonucleotide (ASO)-mediated suppression, chronic shRNA-mediated depletion in aging mice, and germline deletion, we establish stathmin-2 to be essential for acquisition and maintenance of neurofilament-dependent structuring of axoplasm critical for maintaining diameter and conduction velocity of large-myelinated axons. Sustained stathmin-2 loss from an otherwise mature adult nervous system is demonstrated over a time course of eight months to initiate and drive motor neuron disease that includes 1) shrinkage in inter-neurofilament spacing that is required to produce a three-dimensional space filling array that defines axonal caliber, 2) collapse of mature axonal caliber with tearing of outer myelin layers, 3) reduced conduction ve...
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in... more
Friedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin (FXN). Most FRDA patients are homozygous for large expansions of GAA repeat sequences in intron 1 of FXN, while a fraction of patients are compound heterozygotes with a missense or nonsense mutation in one FXN allele and expanded GAAs in the other. A prevalent missense mutation among FRDA patients changes a glycine at position 130 to valine (G130V). Herein, we report generation of the first mouse model harboring a Fxn point mutation. Changing the evolutionarily conserved glycine 127 in mouse Fxn to valine results in a failure to thrive phenotype in homozygous animals and a substantially reduced number of offspring. Like G130V in FRDA, the G127V mutation results in a dramatic decrease of Fxn protein without affecting transcript synthesis or splicing. FxnG127V mouse embryonic fibroblasts exhibit significantly reduced proliferation and in...
Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss‐of‐function mutations in progranulin (GRN)... more
Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss‐of‐function mutations in progranulin (GRN) are a common cause of FTLD, while TMEM106B variants have been shown to act as disease modifiers in FTLD. Overexpression of TMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal and FTLD‐related pathologies in young Grn−/− mice, suggesting that lowering TMEM106B might be an attractive strategy for therapeutic treatment of FTLD‐GRN. Here, we generate and characterize older Tmem106b−/−Grn−/− double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11–12 months. Compared to Grn−/−, Tmem106b−/−Grn−/− mice have exacerbated FTLD‐related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho‐Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulating TMEM106B levels is a viable therapeutic strategy.
N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the... more
N-Glycanase 1 (NGLY1) is a cytoplasmic deglycosylating enzyme. Loss-of-function mutations in the NGLY1 gene cause NGLY1 deficiency, which is characterized by developmental delay, seizures, and a lack of sweat and tears. To model the phenotypic variability observed among patients, we crossed a Drosophila model of NGLY1 deficiency onto a panel of genetically diverse strains. The resulting progeny showed a phenotypic spectrum from 0 to 100% lethality. Association analysis on the lethality phenotype, as well as an evolutionary rate covariation analysis, generated lists of modifying genes, providing insight into NGLY1 function and disease. The top association hit was Ncc69 (human NKCC1/2), a conserved ion transporter. Analyses in NGLY1-/- mouse cells demonstrated that NKCC1 has an altered average molecular weight and reduced function. The misregulation of this ion transporter may explain the observed defects in secretory epithelium function in NGLY1 deficiency patients.
DNA-membrane association critical for initiation of DNA replication in Bacillus subtilis can be classified into two types. Type I is salt resistant and dependent on the initiation gene, dnaB, and type II is salt sensitive and independent... more
DNA-membrane association critical for initiation of DNA replication in Bacillus subtilis can be classified into two types. Type I is salt resistant and dependent on the initiation gene, dnaB, and type II is salt sensitive and independent of the dnaB gene. We found and sequenced two adjacent areas of type II binding within 1% of oriC on the B. subtilis chromosome.
The classical minor histocompatibility 3 (H3) locus was originally defined by the phenotype of skin graft rejection, which is a complex genetic trait.H3is now known to be a gene complex comprised of a minimum of two functionally... more
The classical minor histocompatibility 3 (H3) locus was originally defined by the phenotype of skin graft rejection, which is a complex genetic trait.H3is now known to be a gene complex comprised of a minimum of two functionally interdependent alloantigen-encoding loci,H3aandH3b. H3aencodes a peptide recognized by cytotoxic T cells, andH3bencodes a peptide that stimulates helper T cells. TheH3complex also contains the β2-microglobulin gene (B2m), and polymorphisms inB2mcontribute to the tissue rejection phenotype. We describe a high-density genetic linkage map of a 16-cM region of mouse Chromosome 2 from thrombospondin (Thbs1) to paired box gene 1 (Pax1). This genetic map includesH3a, H3b,andB2m.Other genes and anonymous loci have also been placed on the map.H3amaps betweenD2Mit444andB2min close vicinity to several known genes.H3bmaps 12 cM distal toH3a,and the proprotein convertase subtilisin/kexin type 2 gene (Pcsk2;formerlyNec2) cosegregates withH3bin a high-resolution backcross panel. TheH3complex spans a region that shows conserved synteny to human chromosomes 15q, 2q, and 20p.
We have identified two peptides corresponding to the male-specific HY minor histocompatibility Ags presented by HLA-B27 in transgenic rodents, isolated from whole cell extracts and from immunoprecipitated B27 molecules of male B27 rat... more
We have identified two peptides corresponding to the male-specific HY minor histocompatibility Ags presented by HLA-B27 in transgenic rodents, isolated from whole cell extracts and from immunoprecipitated B27 molecules of male B27 rat spleen cells. HPLC peptide fractions that sensitized female B27 targets for lysis by B27-restricted anti-HY CTL were analyzed by electrospray tandem mass spectrometry using a new highly sensitive quadrupole/time-of-flight instrument. Two peptide sequences were obtained, KQYQKSTER and AVLNKSNREVR. Synthetic peptides corresponding to these sequences bound B27 in vitro and were recognized by distinct B27-restricted anti-HY CTL populations. Neither peptide sequence entirely matches known protein sequences or shows a resemblance to known Y chromosome genes, but both show homology to known autosomally encoded proteins. Both peptides were shown to be controlled by the Sxr(b) segment of the short arm of the mouse Y chromosome, a segment known to contain all previously identified HY Ags. Taken together, these findings suggest that the two peptides arise as a result of Y chromosome-regulated control of one or more autosomal gene products. Although arginine at position 2 is a dominant anchor residue for peptides bound to B27, neither B27-presented HY sequence contains this residue. These studies, employing sensitive new methodology for identification of MHC-bound peptides, significantly extend the complexity of the genetic basis of HY Ags and expand the repertoire of antigenically active peptides bound to B27.
We have used Tn917lacZ to mutagenize the Bacillus subtilis chromosome and have isolated mutants that are defective in chemotaxis and motility. Mapping of the transposon inserts identified two new loci. Mutations in one of these loci... more
We have used Tn917lacZ to mutagenize the Bacillus subtilis chromosome and have isolated mutants that are defective in chemotaxis and motility. Mapping of the transposon inserts identified two new loci. Mutations in one of these loci generated mutants that had paralyzed flagella. Accordingly, we designate this a mot locus. The other locus is closely linked to the first and encodes proteins specifying chemotaxis functions. This locus is designated the cheX locus. Both the mot and cheX loci map close to ptsI. An additional transposon insert that maps in the hag locus was obtained. The pattern of beta-galactosidase expression from some of the transposons suggested that the mot locus is regulated by sigD, a minor sigma factor of B. subtilis. The cheX locus appeared to be under the control of vegetative sigA. Four transposon inserts were mapped to a previously characterized che locus near spcB. These mutants did not produce flagellin and were defective in the methylation of the methyl-accepting chemotaxis proteins. This locus probably encodes proteins required for flagellum biosynthesis and other proteins that are required for the methylation response.
A cloned chemotaxis operon has been characterized. Thirteen representative che mutations from different complementation groups were localized on the physical map by recombination experiments. The use of integration plasmids established... more
A cloned chemotaxis operon has been characterized. Thirteen representative che mutations from different complementation groups were localized on the physical map by recombination experiments. The use of integration plasmids established that at least 10 of these complementation groups within this locus are cotranscribed. An additional three complementation groups may form part of the same transcript. The direction of transcription and the time of expression were determined from chromosomal che-lacZ gene fusions. The promoter was cloned and localized to a 3-kilobase fragment. Expression of beta-galactosidase from this promoter was observed primarily during the logarithmic phase of growth. Three-factor PBS1 cotransduction experiments were performed to order the che locus with respect to adjacent markers. The cheF141 mutation is 70 to 80% linked to pyrD1. This linkage is different from that reported previously (G. W. Ordal, D. O. Nettleton, and J. A. Hoch, J. Bacteriol. 154:1088-1097, 1983). The cheM127 mutation is 57% linked by transformation to spcB3. The gene order determined from all crosses is pyrD-cheF-cheM-spcB.
Research Interests:
The gerA locus, mutations in which affect the germination response of spores to L-alanine and related amino acids, is contained within a 6-kilobase region of DNA cloned in phage and plasmid vectors. Fragments from this region, subcloned... more
The gerA locus, mutations in which affect the germination response of spores to L-alanine and related amino acids, is contained within a 6-kilobase region of DNA cloned in phage and plasmid vectors. Fragments from this region, subcloned in the shuttle vector pHV33, were introduced into Bacillus subtilis, and their ability to complement chromosomal gerA mutations in a recE4 background was examined. Although the plasmids were somewhat unstable, it was possible to score complementation within spore-containing colonies on nutrient agar by their ability to reduce 2,3,5-triphenyltetrazolium chloride in an overlay. These studies have assigned the 10 gerA mutations tested to three complementation groups. An analysis of Tn1000 insertions into the cloned DNA of two relatively stable plasmids that together encompass the entire gerA region has identified more precisely the location and extent of the complementation units; recombination studies and in vitro mutagenesis were used to further delin...
Minor histocompatibility (H) Ags elicit T cell responses and thereby cause chronic graft rejection and graft-vs-host disease among MHC identical individuals. Although numerous independent H loci exist in mice of a given MHC haplotype,... more
Minor histocompatibility (H) Ags elicit T cell responses and thereby cause chronic graft rejection and graft-vs-host disease among MHC identical individuals. Although numerous independent H loci exist in mice of a given MHC haplotype, certain H Ags dominate the immune response and are thus of considerable conceptual and therapeutic importance. To identify these H Ags and their genes, lacZ-inducible CD8+ T cell hybrids were generated by immunizing C57BL/6 (B6) mice with MHC identical BALB.B spleen cells. The cDNA clones encoding the precursor for the antigenic peptide/Kb MHC class I complex were isolated by expression cloning using the BCZ39.84 T cell as a probe. The cDNAs defined a new H locus (termed H60), located on mouse chromosome 10, and encoded a novel protein that contains the naturally processed octapeptide LTFNYRNL (LYL8) presented by the Kb MHC molecule. Southern blot analysis revealed that the H60 locus was polymorphic among the BALB and the B6 strains. However, none of t...
We have identified two peptides corresponding to the male-specific HY minor histocompatibility Ags presented by HLA-B27 in transgenic rodents, isolated from whole cell extracts and from immunoprecipitated B27 molecules of male B27 rat... more
We have identified two peptides corresponding to the male-specific HY minor histocompatibility Ags presented by HLA-B27 in transgenic rodents, isolated from whole cell extracts and from immunoprecipitated B27 molecules of male B27 rat spleen cells. HPLC peptide fractions that sensitized female B27 targets for lysis by B27-restricted anti-HY CTL were analyzed by electrospray tandem mass spectrometry using a new highly sensitive quadrupole/time-of-flight instrument. Two peptide sequences were obtained, KQYQKSTER and AVLNKSNREVR. Synthetic peptides corresponding to these sequences bound B27 in vitro and were recognized by distinct B27-restricted anti-HY CTL populations. Neither peptide sequence entirely matches known protein sequences or shows a resemblance to known Y chromosome genes, but both show homology to known autosomally encoded proteins. Both peptides were shown to be controlled by the Sxr(b) segment of the short arm of the mouse Y chromosome, a segment known to contain all pr...
The present study investigated the inheritance of dietary fat, carbohydrate, and kilocalorie intake traits in an F(2) population derived from an intercross between C57BL/6J (fat-preferring) and CAST/EiJ (carbohydrate-preferring) mice.... more
The present study investigated the inheritance of dietary fat, carbohydrate, and kilocalorie intake traits in an F(2) population derived from an intercross between C57BL/6J (fat-preferring) and CAST/EiJ (carbohydrate-preferring) mice. Mice were phenotyped for self-selected food intake in a paradigm which provided for 10 days a choice between two macronutrient diets containing 78/22% of energy as a composite of either fat/protein or carbohydrate/protein. Quantitative trait locus (QTL) analysis identified six significant loci for macronutrient intake: three for fat intake on chromosomes (Chrs) 8 (Mnif1), 18 (Mnif2), and X (Mnif3), and three for carbohydrate intake on Chrs 17 (Mnic1), 6 (Mnic2), and X (Mnic3). An absence of interactions among these QTL suggests the existence of separate mechanisms controlling the intake of fat and carbohydrate. Two significant QTL for cumulative kilocalorie intake, adjusted for baseline body weight, were found on Chrs 17 (Kcal1) and 18 (Kcal2). Without...
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake... more
In this study, we investigated the metabolic phenotype of PKCtheta knockout mice (C57BL/6J) on chow diet and high-fat diet (HFD). The knockout (KO) mice are normal in growth and reproduction. On the chow diet, body weight and food intake were not changed in the KO mice; however, body fat content was increased with a corresponding decrease in body lean mass. Energy expenditure and spontaneous physical activity were decreased in the KO mice. On HFD, energy expenditure and physical activity remained low in the KO mice. The body weight and fat content were increased rapidly in the KO mice. At 8 wk on HFD, severe insulin resistance was detected in the KO mice with hyperinsulinemic euglycemic clamp and insulin tolerance test. Insulin action in both hepatic and peripheral tissues was reduced in the KO mice. Plamsa free fatty acid was increased, and expression of adiponectin in the adipose tissue was decreased, in the KO mice on HFD. This study suggests that loss of PKCtheta reduces energy ...
Metabolic syndrome describes the human condition characterized by the presence of coexisting traditional risk factors for cardiovascular disease, such as hypertension, dyslipidemia, glucose intolerance, and obesity, in addition to... more
Metabolic syndrome describes the human condition characterized by the presence of coexisting traditional risk factors for cardiovascular disease, such as hypertension, dyslipidemia, glucose intolerance, and obesity, in addition to nontraditional cardiovascular disease risk factors, such as inflammatory processes and abnormalities of the blood coagulation system. Although the specific etiology for metabolic syndrome is not known, insulin resistance--a clinical state in which a normal or elevated insulin concentration reflects an impaired biological response--is present and is considered a key pathophysiologic abnormality. As such, metabolic syndrome can be considered to be a prediabetic state and contributes greatly to increased morbidity and mortality in humans. Given the public health significance of metabolic syndrome, successful strategies are direly needed to intervene in its development. As such, nutritional supplementation with botanicals that effectively address pathogenic me...
The H3 complex, on mouse Chromosome 2, is an important model locus for understanding mechanisms underlying non-self Ag recognition during tissue transplantation rejection between MHC-matched mouse strains. H3a is a minor... more
The H3 complex, on mouse Chromosome 2, is an important model locus for understanding mechanisms underlying non-self Ag recognition during tissue transplantation rejection between MHC-matched mouse strains. H3a is a minor histocompatibility Ag gene, located within H3, that encodes a polymorphic peptide alloantigen recognized by cytolytic T cells. Other genes within the complex include beta2-microglobulin and H3b. A yeast artificial chromosome (YAC) contig is described that spans the interval between D2Mit444 and D2Mit17, a region known to contain H3a. This contig refines the position of many genes and anonymous loci. In addition, 23 new sequence-tagged sites are described that further increase the genetic resolution surrounding H3a. A novel assay was developed to determine the location of H3a within the contig. Representative YACs were modified by retrofitting with a mammalian selectable marker, and then introduced by spheroplast fusion into mouse L cells. YAC-containing L cells were...
Metabolic syndrome,describes the human,condition characterized by the presence of coexisting traditional risk factors for cardiovas- cular disease, such as hypertension, dyslipidemia, glucose intoler- ance, and obesity, in addition to... more
Metabolic syndrome,describes the human,condition characterized by the presence of coexisting traditional risk factors for cardiovas- cular disease, such as hypertension, dyslipidemia, glucose intoler- ance, and obesity, in addition to nontraditional cardiovascular dis- ease risk factors, such as inflammatory processes and abnormalities of the blood coagulation system. Although the specific etiology for metabolic syndrome is not known, insulin resistance—a clinical state in which a normal or elevated insulin concentration reflects an impaired biological response—is present and is considered a key pathophysiologicabnormality.Assuch,metabolicsyndromecanbe considered to be a prediabetic state and contributes greatly to in- creased morbidity and mortality in humans. Given the public health significance of metabolic syndrome, successful strategies are direly needed to intervene in its development. As such, nutritional supple- mentationwithbotanicalsthateffectivelyaddresspathogenicmech- an...
Research Interests:

And 35 more