[go: up one dir, main page]

Vai al contenuto

Intero di Eisenstein

Da Wikipedia, l'enciclopedia libera.
Interi di Eisenstein come punti di intersezione di un reticolo triangolare nel piano complesso

In matematica, un intero di Eisenstein, dal nome del matematico Ferdinand Eisenstein, è un numero complesso della forma:

dove a e b sono numeri interi e

è una radice cubica dell'unità. Gli interi di Eisenstein formano un reticolo triangolare nel piano complesso, a differenza degli interi gaussiani che formano un reticolo rettangolare nel piano complesso.

Gli interi di Eisenstein formano un anello commutativo di numeri algebrici nel campo dei numeri algebrici Q(√−3). Essi formano anche un dominio Euclideo.

Per vedere che gli interi di Eisenstein sono interi algebrici si noti che ogni z = a + bω è una radice del polinomio monico

In particolare, soddisfa l'equazione

Il gruppo delle unità nell'anello degli interi di Eisenstein è un gruppo ciclico formato dalle radici dell'unità seste nel piano complesso. In particolare esse sono:

Questi interi di Eisenstein sono gli unici con valore assoluto unitario.

Il prodotto di due interi di Eisenstein (a + bω) per (c + dω) si scrive esplicitamente come

La norma di un intero di Eisenstein è semplicemente il quadrato del suo modulo, ed è data da

Il coniugato di soddisfa la relazione

Numeri primi di Eisenstein

[modifica | modifica wikitesto]

Se x e y sono interi di Eisenstein, si dice che x divide y se esiste un intero di Eisenstein z tale che

Questo estende la nozione di divisibilità per i numeri interi ordinari. Inoltre si può estendere la nozione di primalità; un intero di Eisenstein non unitario x è un primo di Eisentein se i suoi unici divisori sono nella forma ux e u dove u è una qualunque delle sei unità.

Si può dimostrare che un numero primo ordinario (o primo razionale) della forma può essere fattorizzato in e quindi non primo negli interi di Eisentein. Inoltre, un numero della forma x2xy + y2 è un primo razionale se e solo se x + ωy è un primo di Eisentein.

Dominio Euclideo

[modifica | modifica wikitesto]

L'anello degli interi di Eisenstein forma un dominio Euclideo la cui norma v è

Questo può essere dimostrato immergendo gli interi di Eisenstein nei numeri complessi: poiché

e poiché

segue che

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica