[go: up one dir, main page]

A publishing partnership

Table of contents

Volume 151

Number 5, 2016 May 1

Previous issue Next issue

110

, , , , , , , , , et al

Time-series photometry of the CoRoT field SRc02 was obtained by the Berlin Exoplanet Search Telescope II (BEST II) in 2009. The main aim was to conduct a ground-based follow-up of the CoRoT field in order to detect variable stars with better spatial resolution than what can be achieved with the CoRoT Space Telescope. A total of 1846 variable stars were detected, of which only 30 have been previously known. For nine eclipsing binaries the stellar parameters were determined by modeling their light curves.

111

and

We evaluate the extent of the regions within the α Centauri AB star system where small planets are able to orbit for billion-year timescales, and we calculate the positions on the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert and Holman (AJ 113, 1445, 1997) regarding the approximate size of the regions of stable orbits, which are larger for retrograde orbits relative to the binary than for prograde orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov–Kozai mechanism are also readily apparent.

112

, , , , , , , , , and

We present the discovery in Kepler's K2 mission observations and our follow-up radial velocity (RV) observations from Keck/HIRES for four eclipsing binary (EB) star systems in the young benchmark Pleiades and Hyades clusters. Based on our modeling results, we announce two new low mass (${M}_{\mathrm{tot}}\lt 0.6$${M}_{\odot }$) EBs among Pleiades members (HCG 76 and MHO 9) and we report on two previously known Pleiades binaries that are also found to be EB systems (HII 2407 and HD 23642). We measured the masses of the binary HCG 76 to ≲2.5% precision, and the radii to ≲4.5% precision, which together with the precise effective temperatures yield an independent Pleiades distance of 132 ± 5 pc. We discuss another EB toward the Pleiades that is a possible but unlikely Pleiades cluster member (AK II 465). The two new confirmed Pleiades systems extend the mass range of Pleiades EB components to 0.2–2 ${M}_{\odot }$. Our initial measurements of the fundamental stellar parameters for the Pleiades EBs are discussed in the context of the current stellar models and the nominal cluster isochrone, finding good agreement with the stellar models of Baraffe et al. at the nominal Pleiades age of 120 Myr. Finally, in the Hyades, we report a new low mass eclipsing system (vA 50) that was concurrently discovered and studied by Mann et al. We confirm that the eclipse is likely caused by a Neptune-sized transiting planet, and with the additional RV constraints presented here we improve the constraint on the maximum mass of the planet to be ≲1.2 MJup.

113

, , , and

We present an analysis of four epochs of Hα and [S iiλλ 6716/6731 Hubble Space Telescope (HST) images of HH 1. For determining proper motions, we explore a new method based on the analysis of spatially degraded images obtained convolving the images with wavelet functions of chosen widths. With this procedure, we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities, and spatial distribution of the line emission. We find that over the last two decades HH 1 shows a clear acceleration. Also, the Hα and [S ii] intensities first dropped and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O iiiλ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O iii]/Hα ratio.

114

, , and

We present a study of the statistical flare rates of M dwarfs (dMs) with close white dwarf (WD) companions (WD+dM; typical separations <1 au). Our previous analysis demonstrated that dMs with close WD companions are more magnetically active than their field counterparts. One likely implication of having a close binary companion is increased stellar rotation through disk-disruption, tidal effects, and/or angular momentum exchange; increased stellar rotation has long been associated with an increase in stellar activity. Previous studies show a strong correlation between dMs that are magnetically active (showing Hα in emission) and the frequency of stellar flare rates. We examine the difference between the flare rates observed in close WD+dM binary systems and field dMs. Our sample consists of a subset of 181 close WD+dM pairs from Morgan et al. observed in the Sloan Digital Sky Survey Stripe 82, where we obtain multi-epoch observations in the Sloan ugriz-bands. We find an increase in the overall flaring fraction in the close WD+dM pairs (0.09 ± 0.03%) compared to the field dMs (0.0108 ± 0.0007%) and a lower flaring fraction for active WD+dMs (0.05 ± 0.03%) compared to active dMs (0.28 ± 0.05%). We discuss how our results constrain both the single and binary dM flare rates. Our results also constrain dM multiplicity, our knowledge of the Galactic transient background, and may be important for the habitability of attending planets around dMs with close companions.

115

, , , and

We obtained deep near-infrared images of Sh 2-208, one of the lowest-metallicity H ii regions in the Galaxy, [O/H] = −0.8 dex. We detected a young cluster in the center of the H ii region with a limiting magnitude of K = 18.0 mag (10σ), which corresponds to a mass detection limit of ∼0.2 M. This enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. We identified 89 cluster members. From the fitting of the K-band luminosity function (KLF), the age and distance of the cluster are estimated to be ∼0.5 Myr and ∼4 kpc, respectively. The estimated young age is consistent with the detection of strong CO emission in the cluster region and the estimated large extinction of cluster members (AV ∼ 4–25 mag). The observed KLF suggests that the underlying initial mass function (IMF) of the low-metallicity cluster is not significantly different from canonical IMFs in the solar neighborhood in terms of both high-mass slope and IMF peak (characteristic mass). Despite the very young age, the disk fraction of the cluster is estimated at only 27% ± 6%, which is significantly lower than those in the solar metallicity. Those results are similar to Sh 2-207, which is another star-forming region close to Sh 2-208 with a separation of 12 pc, suggesting that their star-forming activities in low-metallicity environments are essentially identical to those in the solar neighborhood, except for the disk dispersal timescale. From large-scale mid-infrared images, we suggest that sequential star formation is taking place in Sh 2-207, Sh 2-208, and the surrounding region, triggered by an expanding bubble with a ∼30 pc radius.

116

, , , , , , , , , et al

The Catania Astrophysical Observatory Spectropolarimeter (CAOS) is a white-pupil cross-dispersed échelle spectrograph with a spectral resolution of up to R = 55,000 in the 375–1100 nm range in a single exposure, with complete coverage up to 856 nm. CAOS is linked to the 36-inch telescope, at Mount Etna Observatory, with a couple of 100 μm optical fibers and it achieves a signal-to-noise ratio better than 60 for a V = 10 mag star in one hour. CAOS is thermally stabilized in temperature within a 0.01 K rms, so that radial velocities are measured with a precision better than 100 m s−1 from a single spectral line. Linear and circular spectropolarimetric observations are possible by means of a Savart plate working in series with a half-wave and a quarter-wave retarder plate in the 376–850 nm range. As is usual for high-resolution spectropolarimeters, CAOS is suitable to measure all Stokes parameters across spectral lines and it cannot measure the absolute degree of polarization. Observations of unpolarized standard stars show that instrumental polarization is generally zero at 550 nm and can increase up to 3% at the other wavelengths. Since polarized and unpolarized standard stars are useless, we suggest a method to calibrate a high-resolution spectropolarimeter on the basis of the polarimetric properties of spectral lines formed in the presence of a magnetic field. As applied to CAOS, observations of magnetic chemically peculiar stars of the main sequence show that the cross-talk from linear to circular polarization is smaller than 0.4% and that conversion from circular to linear is less than 2.7%. Strength and wavelength dependences of cross-talk can be entirely ascribed, via numerical simulations, to the incorrect retardance of achromatic wave plates.

117

, , , , , , , and

We present the first comprehensive thermal and rotational analysis of the second most distant trans-Neptunian object (TNOs) (225088) 2007 OR10. We combined optical light curves provided by the Kepler Space TelescopeK2 extended mission and thermal infrared data provided by the Herschel Space Observatory. We found that (225088) 2007 OR10 is likely to be larger and darker than derived by earlier studies: we obtained a diameter of $d={1535}_{-225}^{+75}\;{\rm{km}}$ which places (225088) 2007 OR10 in the biggest top three TNOs. The corresponding visual geometric albedo is ${p}_{V}={0.089}_{-0.009}^{+0.031}$. The light-curve analysis revealed a slow rotation rate of Prot = 44.81 ± 0.37 hr, superseded by very few objects. The most likely light-curve solution is double-peaked with a slight asymmetry; however, we cannot safely rule out the possibility of having a rotation period of Prot = 22.40 ± 0.18 hr, which corresponds to a single-peaked solution. Due to the size and slow rotation, the shape of the object should be a MacLaurin ellipsoid, so the light variation should be caused by surface inhomogeneities. Its newly derived larger diameter also implies larger surface gravity and a more likely retention of volatiles—CH4, CO, and N2—on the surface.

118

, , , , , , , , , et al

We report the discovery of one RR Lyrae star in the ultra-faint satellite galaxy Hydra II based on time series photometry in the g, r and i bands obtained with the Dark Energy Camera at Cerro Tololo Inter-American Observatory, Chile. The association of the RR Lyrae star discovered here with Hydra II is clear because is located at $42^{\prime\prime} $ from the center of the dwarf, well within its half-light radius of $102^{\prime\prime} $. The RR Lyrae star has a mean magnitude of $i=21.30\pm 0.04$ which is too faint to be a field halo star. This magnitude translates to a heliocentric distance of 151 ± 8 kpc for Hydra II; this value is $\sim 13\%$ larger than the estimate from the discovery paper based on the average magnitude of several blue horizontal branch star candidates. The new distance implies a slightly larger half-light radius of ${76}_{-10}^{+12}$ pc and a brighter absolute magnitude of ${M}_{V}=-5.1\pm 0.3$, which keeps this object within the realm of the dwarf galaxies. A comparison with other RR Lyrae stars in ultra-faint systems indicates similar pulsational properties among them, which are different to those found among halo field stars and those in the largest of the Milky Way satellites. We also report the discovery of 31 additional short period variables in the field of view (RR Lyrae, SX Phe, eclipsing binaries, and a likely anomalous cepheid) which are likely not related with Hydra II.

119

, , and

We have examined the effect of slow growth of a central black hole on spherical galaxies that obey Sérsic or ${R}^{1/m}$ surface-brightness profiles. During such growth the actions of each stellar orbit are conserved, which allows us to compute the final distribution function (DF) if we assume that the initial DF is isotropic. We find that black hole growth leads to a central cusp or "excess light," in which the surface brightness varies with radius as ${R}^{-1.3}$ (with a weak dependence on Sérsic index m), the line-of-sight velocity dispersion varies as ${R}^{-1/2}$, and the velocity anisotropy is $\beta \simeq -0.24$ to −0.28 depending on m. The excess stellar mass in the cusp scales approximately linearly with the black hole mass, and is typically 0.5–0.85 times the black hole mass. This process may strongly influence the structure of nuclear star clusters in spheroidal galaxies if they contain black holes.

120

, , , , , , , , , et al

Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift $z\lt 1$. The far-infrared (FIR, 70-500 μm) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer and cataloged data to analyze the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGNs), and cool dust heated by stars. The level of emission from relativistic jets is also estimated to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of $30\;\mu {\rm{m}}$. The low-excitation radio galaxies and the MIR-weak sources represent an MIR- and FIR-faint AGN population that is different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star-formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1–100 times lower dust/stellar mass ratio than for the Milky Way, which indicates that these 3CR hosts have very low levels of interstellar matter and explains the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star-forming galaxies.

121

, , , , , , , , , et al

We report the discovery of two new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven Hα emitters were discovered using the Hα imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3 m telescope at the Lick observatory. Based on their spectral types, three Hα emitters were confirmed as Be stars with Hα equivalent widths greater than −10 Å. Two objects were also observed by the new spectrograph spectral energy distribution-machine (SED-machine) on the Palomar 60-inch Telescope. The SED-machine results show strong Hα emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-machine can provide rapid observations for Be stars in a comprehensive survey in the future.

122

, , , , , , and

We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

123

, , , , , , , , , et al

We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ∼3.45 year long, near-total eclipse (depth of ∼4.5 mag) with a very long period of ∼69.1 years. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, epsilon Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 years and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (Teff ≈ 8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range of 0.1–0.5 R (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1–2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a "stripped red giant" subdwarf-B type star destined to become a He white dwarf. It is, however, somewhat cooler than most sdB stars, implying a very low mass for this "pre-He-WD" star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semimajor axis of ∼24 au) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). In the meantime, radial velocity observations would establish the masses of the components, and high-cadence UV observations could potentially reveal oscillations of the hot companion that would further constrain its evolutionary status. In any case, this system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype epsilon Aurigae.

124

, , , and

We present multi-color photometric observations for two neglected near-contact binaries, IZ Mon ($P=0\_\_AMP\_\_fd;77980$) and AR Dra ($P=0\_\_AMP\_\_fd;67584$). By the aid of the updated W-D analysis code, the photometric solutions were deduced from the multi-color light curves (LCs). IZ Mon is a semi-detached binary with a mass ratio of $q=0.388(\pm 0.002)$, while AR Dra is a detached star with a mass ratio of $q=0.652(\pm 0.002)$. The asymmetric LCs of IZ Mon were modeled by a hot spot on the secondary's surface, which may be attributed to mass transfer from the primary. Based on all collected eclipse times for two systems, we constructed their timing residual curves. The orbital period for IZ Mon may be continuously decreasing at a rate of ${dP}/{dt}=-2.06(\pm 0.04)\;\mathrm{days}\;{\mathrm{yr}}^{-1}$, which may result from mass and angular momentum loss from the central system. For AR Dra, there exists a cyclic variation with a period of ${P}_{3}=104.9(\pm 2.9)\;\mathrm{yr}$ due to light-time orbit effect via the presence of the third body, whose mass is more than $0.28(\pm 0.02)\;{M}_{\odot }$. Finally, two near-contact binaries, IZ Mon and AR Dra, will evolve into contact binaries.

125

, , , , , , , , , et al

Extensive and independent observations of Type Ia supernova (SN Ia) SN 2013dy are presented, including a larger set of UBVRI photometry and optical spectra from a few days before the peak brightness to ∼ 200 days after explosion, and ultraviolet (UV) photometry spanning from t ≈ –10 days to t ≈ +15 days refers to the B band maximum. The peak brightness (i.e., MB = –19.65 ± 0.40 mag; Lmax = [1.95 ± 0.55] × 1043 erg s−1) and the mass of synthesized 56Ni (i.e., M(56Ni) = 0.90 ± 0.26 M) are calculated, and they conform to the expectation for an SN Ia with a slow decline rate (i.e., Δm15(B) = 0.90 ± 0.03 mag). However, the near infrared (NIR) brightness of this SN (i.e., MH = –17.33 ± 0.30 mag) is at least 1.0 mag fainter than usual. Besides, spectroscopy classification reveals that SN 2013dy resides on the border of "core normal" and "shallow silicon" subclasses in the Branch et al. classification scheme, or on the border of the "normal velocity" SNe Ia and 91T/99aa-like events in the Wang et al. system. These suggest that SN 2013dy is a slow-declining SN Ia located on the transitional region of nominal spectroscopic subclasses and might not be a typical normal sample of SNe Ia.

126

, , , , , , , , , and

We carried out deep- and wide-field near- and mid-infrared observations for a sample of eight bright-rimmed clouds (BRCs). Supplemented with the Spitzer archival data, we have identified and classified 44 to 433 young stellar objects (YSOs) associated with these BRCs. The Class I sources are generally located toward the places with higher extinction and are relatively closer to each other than the Class II sources, confirming that the young protostars are usually found in regions with denser molecular material. On the other hand the comparatively older population, Class II objects, are more randomly found throughout the regions, which can be due to their dynamical evolution. Using the minimal sampling tree analyses, we have extracted 13 stellar cores of eight or more members, which contain 60% of the total YSOs. The typical core is ∼0.6 pc in radii and somewhat elongated (aspect ratio of 1.45), of relatively low stellar density (surface density 60 pc−2), consisting of a small (35) number of YSOs of relatively young sources (66% Class I), and partially embedded (median AK = 1.1 mag). But the cores show a wide range in their mass distribution (∼20 to 2400 M), with a median value of around 130 M. We found the star-formation efficiencies in the cores to be between 3% and 30% with an average of ∼14%, which agrees with the efficiencies needed to link the core mass function to the initial mass function. We also found a linear relation between the density of the clouds and the number of YSOs. The peaked nearest neighbor spacing distributions of the YSOs and the ratio of Jeans lengths to the YSO separations indicates a significant degree of non-thermally driven fragmentation in these BRCs.

127

, , , , , and

We present an analysis of the CN and CH molecular band strengths in NGC 6791 from low-resolution Sloan Extension for Galactic Understanding and Exploration spectra as a means to detect chemical variations in the cluster. NGC 6791 is a heavily studied open cluster (OC) due to its unique combination of old age, high mass, and high metallicity. These characteristics place NGC 6791 between the physical properties of most globular and OCs. Recent photometric and spectroscopic studies yield contradicting results, with some claiming to detect signs of multiple populations, as in globular clusters, while others do not. We do not find large spreads in the CN and CH band strength distributions that would suggest multiple populations. By pairing spectral synthesis with the measured CN values, we conclude that the maximum [N/Fe] variation in the cluster is 0.2 dex. Additionally, we find that the saturation of the CH band at high metallicities limits its usefulness in detecting multiple populations and determining C abundances.

128

, , and

Daily mean value of solar wind velocity measured by various spacecraft near the Earth's orbit from 1963 November 27 to 2013 December 31 given by OMNIWeb is utilized to investigate its characteristics through statistical analyses. The percent probability distribution of solar wind velocity can be described well by the Γ distribution function with the most probable velocity to be $373\;\mathrm{km}\;{{\rm{s}}}^{-1}$. It is found that solar wind could be statistically classified into three groups: (1) the low-velocity wind, $v\lt 450\;\mathrm{km}\;{{\rm{s}}}^{-1}$, which positively responds to, and in the cycle phase lags, the solar activity cycle; (2) the high-velocity wind, $450\leqslant v\lt 725\;\mathrm{km}\;{{\rm{s}}}^{-1}$, which negatively responds to, and in the cycle phase leads, the solar activity cycle, but in a short timescale (one-rotation-period) lags the solar activity cycle; and (3) the extreme-high-velocity wind, $v\geqslant 725\;\mathrm{km}\;{{\rm{s}}}^{-1}$, which positively responds to, and in cycle phase leads, the solar activity cycle. A period of about 27 days is determined for solar wind in the first two groups, so that solar wind in the groups is modulated by the solar rotation and related with solar long-life magnetic structures. Solar wind of extreme high velocity appears mainly at the descending phases of the solar cycles.

129

, , , , , , and

We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera 3 (WFC3) of 70 Galactic Cepheids, typically within 1 kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color–magnitude diagrams, and having separations $\geqslant 5^{\prime\prime} $ from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K. Thus the fact that the two most probable companions (those of FF Aql and RV Sco) are earlier than type K is not simply a function of the detection limit. We find no physical companions having separations larger than 4000 au in the X-ray survey. Two Cepheids are exceptions in that they do have young companions at significantly larger separations (δ Cep and S Nor), but both belong to a cluster or a loose association, so our working model is that they are not gravitationally bound binary members, but rather cluster/association members. All of these properties provide constraints on both star formation and subsequent dynamical evolution. The low frequency of true physical companions at separations $\gt 5^{\prime\prime} $ is confirmed by examination of the subset of the nearest Cepheids and also the density of the fields.