Skip to main content

    samuel yeboah

    The ratio of monounsaturated oleic fatty acid to polyunsaturated linoleic fatty acid (O/L) and the associated agronomic traits were profiled for local peanut (Arachis hypogaea L.) cultivars and accessions in Botswana. The research was... more
    The ratio of monounsaturated oleic fatty acid to polyunsaturated linoleic fatty acid (O/L) and the associated agronomic traits were profiled for local peanut (Arachis hypogaea L.) cultivars and accessions in Botswana. The research was tested on 16 entries planted in four localities across the country. The average total oil yield of the genotypes studied was about 42.1% and there was no significant difference in total oil yield (P < 0.05) across the four research sites and among all entries (accessions). The average mean O/L ratio for all entries was about 1.47. The highest was that of the locally improved variety, Peolwane (2.58), which was significantly different (P < 0.05) from all other accessions, and the lowest is that of the local accession GO 63 (1.23). This study also profiled the agronomic yield traits to identify genotypes that have both high oil quality and high yielding potential. No correlation was detected between pod yield and O/L ratio among the tested genotypes. The station with little rainfall but adequate repartition showed a very high O/L ratio for some genotypes, and future work is recommended to test this interesting observation on the correlation between moisture stress and oil quality.
    Seed oils from six legume cultivars of Phaseolus vulgaris, grown in the Kingdom of Lesotho, were extracted and their physicochemical properties and FA compositions were determined in order to compare their dietary lipids with those in P.... more
    Seed oils from six legume cultivars of Phaseolus vulgaris, grown in the Kingdom of Lesotho, were extracted and their physicochemical properties and FA compositions were determined in order to compare their dietary lipids with those in P. vulgaris cultivars grown in other parts of the world. The oil content of the beans was very low, ranging from 1.5 to 2.0% (w/w). The acid values ranged from 11.0 to 19.2 mg KOH/g, whereas a combination of the PV and the p-anisidine values in Holm's equation gave oxidation values that ranged from 11.0 to 15.0. Thus, considerable enzymatic hydrolysis and oxidation had taken place in the beans during storage. Iodine values ranged from 80.5 to 92.3 (Wijs method), indicating moderate unsaturation in the oils. However, capillary GC analysis, supported by proton NMR analysis of the FAME, gave a total unsaturation range from 79.67 to 84.24%. The dominant FA were α-linolenic acid (36.47–48.81%) and linoleic acid (20.96–36.10%), with appreciable amounts of palmitic acid (14.33–18.23%). This FA composition pattern is quite similar to the FA distribution reported for low oil-bearing legume seeds. Thus, notwithstanding the different climatic and soil conditions, the general properties of lipids in the southern African legume cultivars were quite similar to those of lipids in P. vulgaris cultivars grown in other parts of the world. The high content of α-linolenic acid in the cultivars of P. vulgaris could very likely play a beneficial role in reducing the risk of coronary heart disease among the large populations consuming them in the southern African region.
    A comprehensive compositional and characterization study was carried out on five seed oils from varieties of the melons Citrullus lanatus and C. colocynth in order to evaluate their suitability for large-scale exploitation as edible... more
    A comprehensive compositional and characterization study was carried out on five seed oils from varieties of the melons Citrullus lanatus and C. colocynth in order to evaluate their suitability for large-scale exploitation as edible vegetable oils. The oils were extracted by Soxhlet with a 3:1 mixture of n-hexane/2-propanol with yields that ranged from 24.8 to 30.0% (wt/wt). The refractive indices and relative densities of the oils fell within the narrow ranges of 1.465–1.469 and 0.874–0.954 g/cm3, respectively. Saponification values ranged between 182.1 and 193.8 mg KOH/g, whilst iodine values (IV) ranged from 95.8 to 124.0 (Wijs). The ranges of the values for free fatty acid (AV), 1.2–4.0 mg KOH/g, peroxide (PV), 1.1–10.9 meq/kg and p-anisidine (p-AV), 0.2–9.0, indicated that secondary oxidation products were barely present. GC analysis gave total unsaturation contents of 67.93–82.36%, with linoleic acid (18:2) being the dominant fatty acid (55.21–66.85%). The GC results agreed closely with those from proton NMR analysis of the fatty acid classes. The physicochemical and compositional properties determined in this study show that the qualities of the test Cucurbitacea seed oils are highly comparable to those of soybean, sunflower and groundnut seed oils. Therefore, the test melon seed oils could be developed into commercial products to serve as alternate vegetable oils in Southern and West Africa, the regions where these melons grow.
    In the search for non-traditional seed oils, physicochemical parameters, fatty acid (FA) and triacylglycerol (TAG) profiles for five Botswana seed oils, obtained by Soxhlet extraction, were determined. GC–MS and 1H-NMR analyses showed the... more
    In the search for non-traditional seed oils, physicochemical parameters, fatty acid (FA) and triacylglycerol (TAG) profiles for five Botswana seed oils, obtained by Soxhlet extraction, were determined. GC–MS and 1H-NMR analyses showed the FA profiles for mkukubuyo, Sterculia africana, and manketti, Ricinodendron rautanenii, seed oils dominated by linoleic and oleic acids, 26.1, 16.7 and 51.9, 24.4%, respectively, with S. africana containing significant amounts of cyclic FAs (19.9%). Mokolwane, Hyphaene petersiana, seed oil was typically lauric; 12:0 and 14:0 acids were 25.9 and 13.4%, respectively. Morama, Tylosema esculentum, seed oil resembled olive oil; 18:1 (47.3%) and 18:2 (23.4%) acids dominated. Moretologa-kgomo, Ximenia caffra, seed oil had 45.8% of 18:1 FA, plus significant amounts of very long chain FAs: 26:1 (5.8%), 28:1 (13.9%), 30:1 (3.9%), and acetylenic acids, 9a-18:1 (1.5%) and 9a, 11t-18:2 (16.0%). TAG classes and regiochemistry were determined with ESI-FTICR-MS, and 13C-NMR spectra, respectively. Morama showed seven major TAG classes with C54:4 and C54:3 dominating; mokolwane had 16 major classes with C32:0, C38:0 and C42:2 dominating; manketti had 11 major classes with C54:7, C54:6 and C54:4 dominating; mkukubuyo had 12 major classes with C52:4, C52:3 and C54:4 dominating; moretologa-kgomo had 30 major TAG classes with C64:5, C64:3 and C62:3 dominating. Saturated FAs were generally distributed over the sn-1(3) position for morama, manketti, and moretologa-kgomo but at the sn-2 position for mokolwane and mkukubuyo. These findings indicate that morama and manketti seed oils can be developed for food uses, whilst moretologa-kgomo and mkukubuyo seed oils only for nonfood uses.
    Seed oils were extracted with n-hexane from three edible Leguminosae seeds: Tylosema esculentum, Xanthocercis zambesiaca, and Bauhinia petersiana, giving yields of 48.2, 17.6, and 20.8% (w/w), respectively. Some physical and chemical... more
    Seed oils were extracted with n-hexane from three edible Leguminosae seeds: Tylosema esculentum, Xanthocercis zambesiaca, and Bauhinia petersiana, giving yields of 48.2, 17.6, and 20.8% (w/w), respectively. Some physical and chemical parameters were determined to ascertain the general characteristics of the oils. The saponification and iodine values indicated that all three oil samples could be classified among the olive group of oils. This inference was supported by the results of the detailed fatty acid composition of the oils as determined by capillary gas chromatography. The ratio of total unsaturated to total saturated fatty acids in all three oil samples was approximately 70:30, with either oleic or linoleic acid being the dominant fatty acid. These results were in agreement with a proton nuclear magnetic resonance analysis of the fatty acid classes in the seed oils. Thus, the analysis served to justify the use of the three Leguminosae seed oils in food preparations. The work has further indicated that, with their attractive properties, the seed oils from T. esculentum, X. zambesiaca, and B. petersiana are good candidates for further studies to evaluate their future commercial prospects in the Southern African region.
    A preliminary investigation of the bulk properties of the oil from the edible mophane caterpillar (phane), Imbrasia belina, showed a significant difference in the iodine values of the oils from mature and young phane. Detailed analysis of... more
    A preliminary investigation of the bulk properties of the oil from the edible mophane caterpillar (phane), Imbrasia belina, showed a significant difference in the iodine values of the oils from mature and young phane. Detailed analysis of the fatty acid composition of the two oil samples was thus carried out by capillary gas chromatography (GC) and complemented with 1H and 13C nuclear magnetic resonance (NMR) studies to investigate the degree of unstauration in the two oil samples. While these studies showed that the oil samples from the mature and young mophane caterpillar were much the same in fatty acid composition, the data revealed a significant divergence from a literature report on phane oil. This earlier report puts the ratio of total saturated to total unsaturated fatty acids at approximately 1:1 (48.2:48.8, in percentages) and estimates the fatty acid composition for the major fatty acids as 16:0 (31.9%), 18:0 (15.2%), 18:1 (20.4%), 18:2 (9.9%), and 18:3 (19%). The data collected from the present work, however, showed the fatty acid composition for total saturated and total unsaturated fatty acids to be 40.5 and 57.0%, respectively. This work estimated the fatty acid composition for the major fatty acids as 16:0 (27.2%), 18:0 (12.3%), 18:1 (16.1%), 18.2 (10.7%), and 18:3 (29.0%). Thus, linolenic acid was the most abundant fatty acid in the phane oil. The GC results of the present analysis were largely corroborated by studies of the composition of fatty acid classes in the phane oil estimated from integrals of 1H and 13C NMR signals. Oils from other edible Lepidoptera larvae are also known to be much richer in unsaturated than saturated fatty acids.
    The phytosterol, tocopherol, and tocotrienol profiles for mkukubuyo, Sterculia africana, manketti, Ricinodendron rautanenni, mokolwane, Hyphaene petersiana, morama, Tylosema esculentum, and moretologa-kgomo, Ximenia caffra, seed oils from... more
    The phytosterol, tocopherol, and tocotrienol profiles for mkukubuyo, Sterculia africana, manketti, Ricinodendron rautanenni, mokolwane, Hyphaene petersiana, morama, Tylosema esculentum, and moretologa-kgomo, Ximenia caffra, seed oils from Botswana have been determined. Normal-phase HPLC analysis of the unsaponifiable matter showed that among the selected oils, the most abundant tocopherol and tocotrienol were γ-tocopherol (2232.99 μg/g) and γ-tocotrienol (246.19 μg/g), detected in manketti and mkukubuyo, respectively. Mokolwane oil, however, contained the largest total tocotrienol (258.47 μg/g). Total tocol contents found in manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo oils were 2238.60, 262.40, 246.20, 199.10, and 128.0 μg/g, respectively. GC–MS determination of the relative percentage composition of phytosterols showed 4-desmethylsterols as the most abundant phytosterols in the oils, by occurring up to 90% in moretologa-kgomo, mkukubuyo, and manketti seed oils, with β-sitosterol being the most abundant. Mokolwane seed oil contained the largest percentage composition of 4,4-dimethylsterols (45.93%). Besides 4-desmethylsterols (75%), morama oil also contained significant amounts of 4,4-dimethylsterols and 4-monomethylsterols (15.72% total). GC–MS determination of the absolute amounts of 4-desmethylsterols, after SPE fractionation of the unsaponifiable matter, confirmed that β-sitosterol was the most abundant phytosterol in the test seed oils, with manketti seed oil being the richest source (1326.74 μg/g). The analysis showed total 4-desmethylsterols content as 1617.41, 1291.88, 861.47, 149.15, and 109.11 μg/g for manketti, mokolwane, mkukubuyo, morama, and moretologa-kgomo seed oils, respectively.
    The lipid components of three Cameroonian seed oils, ke tchock (Aframomum arundinaceum), njangsa (Ricinodendron heudelotii) and calabash nutmeg (Monodora myristica), have been investigated. Gas chromatography (GC)–mass spectrometry (MS)... more
    The lipid components of three Cameroonian seed oils, ke tchock (Aframomum arundinaceum), njangsa (Ricinodendron heudelotii) and calabash nutmeg (Monodora myristica), have been investigated. Gas chromatography (GC)–mass spectrometry (MS) fatty acid (FA) analysis showed M. myristica seed oil to be dominated by linoleic (49.29%) and oleic (37.17%) acids; R. heudelotii was mainly linoleic (58.73%), followed by stearic (15.00%) and oleic (14.21%) acids; A. arundinaceum was predominantly oleic (65.76%) and palmitic (20.36%) acids. Electrospray ionization (ESI)-Fourier transform ion cyclotron resonance (FTICR)-MS analysis showed seven major triacylglycerol (TAG) classes for M. myristica, with C54:5, C54:4 and C54:6 dominating. R. heudelotii had eight major TAG classes with C54:8, C54:7 and C54:6 being most abundant. A. arundinaceum also had eight major TAG classes with C52:2, C54:3 and C50:2 dominating. 13C nuclear magnetic resonance (NMR) analysis of the TAGs showed that both sn-1,3 and sn-2 positions were predominantly occupied by linoleoyl and oleoyl chains. High-performance liquid chromatography (HPLC) fluorescence detector (FLD) analysis showed that M. myristica contained only α- and β-tocopherols (195.40 and 73.95 µg/g, respectively), R. heudelotii contained mainly γ-tocopherol (289.40 µg/g), and A. arundinaceum had mainly γ- and β-tocopherols (236.78 and 124.93 µg/g, respectively). GC–MS analysis of the unsaponifiable matter showed that β-sitosterol was the most abundant phytosterol in all three seed oils. The absolute amounts of 4-desmethylsterols were 196.15, 608.71 and 362.15 µg/g for M. myristica, R. heudelotii and A. arundinaceum seed oils, respectively. These compositional and structural studies provide justification for the use of all three seed oils in food products.
    A comprehensive lipid profiling of the oil from the edible mophane caterpillar, Imbrasia belina, has been carried out as part of the study of the nutritional value of the caterpillar. GC-MS analysis revealed the composition of the major... more
    A comprehensive lipid profiling of the oil from the edible mophane caterpillar, Imbrasia belina, has been carried out as part of the study of the nutritional value of the caterpillar. GC-MS analysis revealed the composition of the major FA classes as 18:3 (29.98%), 16:0 (25.64%), 18:1 (17.97%), 18:0 (12.49%) and 18:2 (11.81%), which was in agreement with reported GC-FID analysis of the phane oil. ESI-FTICR mass spectrometric analysis showed phane oil to contain 20 TAG classes, with C54:4 (14.59%), C52:3 (14.71%) and C52:2 (10.49%) being the dominant classes, whilst 13C-NMR studies of the TAGs regiochemistry showed that occupancy of the sn-2 position was dominated by linolenyl and linoleoyl groups whereas the sn-1/3 positions were dominated by saturated groups. Normal-phase HPLC analysis of the unsaponifiable matter showed the presence of α-tocopherol (71.39 μg/g) and γ-tocopherol (1.66 μg/g) as the only tocol content in phane oil. GC-MS analysis of the total acetylated unsaponifiable matter gave the relative composition of the major sterols as cholesterol (53.77%), β-sitosterol (24.16%), 22-dehydrocholesterol (14.58%) and campesterol (6.26%), whilst GC-MS analysis of an SPE pre-fractionated unsaponifiable matter gave the absolute 4-desmethylsterol content (μg/g) as cholesterol (4482.44), β-sitosterol (1861.95), 22-dehydrocholesterol (1274.53), campesterol (503.83) and stigmasterol (21.78). Perhaps the adverse effect of such high dietary cholesterol content on humans could be mitigated by the presence of the substantial amounts of β-sitosterol and campesterol which are known to be blood plasma cholesterol lowering phytosterols.