Skip to main content

    Zengqian Hou

    • ZENGQIAN HOU has been a research geologist in Chinese Academy of Geological Sciences (CAGS) for the past 25 years, si... moreedit
    Jiru is a poorly studied Cu deposit located in the west segment of the Gangdese porphyry Cu belt (GPCB), 200 km west of Lhasa. The deposit consists of both collisional-and postcollisional-stage porphyry-type Cu systems, which are... more
    Jiru is a poorly studied Cu deposit located in the west segment of the Gangdese porphyry Cu belt (GPCB), 200 km west of Lhasa. The deposit consists of both collisional-and postcollisional-stage porphyry-type Cu systems, which are genetically associated with the early Eocene granitoid batholith and the Miocene Jiru porphyry stock, respectively. In this study, we present zircon U–Pb LA-ICP-MS dates and Hf isotopes, whole rock geochemical and Pb isotope geochemical data for the main intrusions in the Jiru deposit. The early Eocene granitoid samples (~ 49 Ma) are characterized by magmatic arc geochemical features, slightly concave REE patterns and well-developed negative Eu anomalies. These geochemical characteristics suggest that the granitoid melts were generated by partial melting of a metasomatized mantle, and that the melt had undergone fractional crystallization of amphibole and plagioclase. In contrast, the Miocene porphyry intrusions (16.4–15.5 Ma) at Jiru are characterized by high K contents, adakitic affinities (e.g., high Sr/Y and La/Yb ratios), subduction signatures (e.g., enriched Cs, Rb, Ba and depleted Nb, Ta, Ti), positive zircon ε Hf (t) values (1–6) and variable 208 Pb/ 204 Pb ratios (38.5–39.0), similar to other post-collisional porphyry intrusions in the Gangdese belt. Based on the above features, we propose that the Miocene porphyry intrusions at Jiru were generated by partial melting of subduction-modified lower crust. Well-developed negative Eu anomalies and low Sr/Y ratios (generally b 20) of the least fractionated samples of the Early Eocene granitoids indicate that water content of the primitive collision-related magma was b 4 wt.%, but increased to over 4 wt.% with fractional crystallization, as evidenced by very weak negative Eu anomalies and relatively high Sr/Y ratios (~40) for some samples with SiO 2 contents of ~67 wt.%. Upper crustal differentiation, which would increase water content of residual magma, is thought to be a key step in the formation of the collision-stage Cu mineralization at Jiru. The presence of Eocene porphyry Cu–Mo mineralization indicates that sulfide precipitation at the base of the orogenic lower crust during the first-stage arc magmatism is not needed in the formation of the postcollisional porphyry Cu deposit at Jiru. This implies that the source of metal and S for postcollisional porphyry Cu deposits is more complex than originally considered.
    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world's REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted... more
    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world's REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high (87)Sr/(86)Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sed...
    We present new Re–Os molybdenite age data on three porphyry Cu–Mo–Au deposits (Yulong, Machangqing, and Xifanping). These deposits are associated with the Himalayan adakitic magmatism that occurred in a continental collision environment,... more
    We present new Re–Os molybdenite age data on three porphyry Cu–Mo–Au deposits (Yulong, Machangqing, and Xifanping). These deposits are associated with the Himalayan adakitic magmatism that occurred in a continental collision environment, controlled by large-scale Cenozoic strike-slip faults in the eastern Indo–Asian collision zone. Three distinct episodes of Cu–Mo–Au mineralization are recognized. At Yulong, Re–Os isotopic data of four molybdenite
    We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture.... more
    We present new whole rock trace element and Pb-isotope data for a suite of Neogene adakitic rocks that formed during the post-collisional stage of the India-Asia collision in an east-west- trending array along the Yalu Tsangpo suture. Compared to classic ‘adakites’ that form along certain active convergent plate margins, the Tibetan adakitic rocks show even stronger enrichment in incompatible elements