Skip to main content

    Yekbun Adiguzel

    The scope of the applications of breath sensors is abundant in disease diagnosis. Lung cancer diagnosis is a well-fitting health-related application of this technology, which is of utmost importance in the health sector, because lung... more
    The scope of the applications of breath sensors is abundant in disease diagnosis. Lung cancer diagnosis is a well-fitting health-related application of this technology, which is of utmost importance in the health sector, because lung cancer has the highest death rate among all cancer types, and it brings a high yearly global burden. The aim of this review is first to provide a rational basis for the development of breath sensors for lung cancer diagnostics from a historical perspective, which will facilitate the transfer of the idea into the rapidly evolving sensors field. Following examples with diagnostic applications include colorimetric, composite, carbon nanotube, gold nanoparticle-based, and surface acoustic wave sensor arrays. These select sensor applications are widened by the state-of-the-art developments in the sensors field. Coping with sampling sourced artifacts and cancer staging are among the debated topics, along with the other concerns like proteomics approaches and biomimetic media utilization, feature selection for data classification, and commercialization.