Skip to main content
Ravi  Sachidanandam

    Ravi Sachidanandam

    PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic... more
    PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5'→3' processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2. We also identify Exonuclease domain-containing 1 (EXD1) as a partner of the MIWI2 piRNA biogenesis factor TDRD12. EXD1 homodimers are inactive as a nuclease but function as an RNA adaptor within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 reduces sequences generated by MILI slicing, impacts biogenesis of MIWI2 piRNAs, and de-represses LINE1 retrotransposons. Thus, piRNA biogenesis triggered by PIWI slicing, and promoted by EXD1, ensures that the same guides instruct PIWI proteins in the nucleus a...
    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor... more
    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also def...
    CD24 is an anchored cell surface marker that is highly expressed in cancer cells (Lee et al., 2009) and its expression is associated with poorer outcome of cancer patients (Kristiansen et al., 2003). Phenotype comparison between two... more
    CD24 is an anchored cell surface marker that is highly expressed in cancer cells (Lee et al., 2009) and its expression is associated with poorer outcome of cancer patients (Kristiansen et al., 2003). Phenotype comparison between two subpopulations derived from the Mvt1 cell line, CD24(-) cells (with no CD24 cell surface expression) and the CD24(+) cells, identified high tumorigenic capacity for the CD24(+) cells. In order to reveal the transcripts that support the CD24(+) aggressive and invasive phenotype we compared the gene profiles of these two subpopulations. mRNA profiles of CD24(-) and CD24(+) cells were generated by deep sequencing, in triplicate, using an Illumina HiSeq 2500. Here we provide a detailed description of the mRNA-seq analysis from our recent study (Rostoker et al., 2015). The mRNA-seq data have been deposited in the NCBI GEO database (accession number GSE68746).
    In developing male germ cells, prospermatogonia, two Piwi proteins, MILI and MIWI2, use Piwi-interacting RNA (piRNA) guides to repress transposable element (TE) expression and ensure genome stability and proper gametogenesis. In addition... more
    In developing male germ cells, prospermatogonia, two Piwi proteins, MILI and MIWI2, use Piwi-interacting RNA (piRNA) guides to repress transposable element (TE) expression and ensure genome stability and proper gametogenesis. In addition to their roles in post-transcriptional TE repression, both proteins are required for DNA methylation of TE sequences. Here, we analyzed the effect of Miwi2 deficiency on piRNA biogenesis and transposon repression. Miwi2 deficiency had only a minor impact on piRNA biogenesis; however, the piRNA profile of Miwi2-knockout mice indicated overexpression of several LINE1 TE families that led to activation of the ping-pong piRNA cycle. Furthermore, we found that MILI and MIWI2 have distinct functions in TE repression in the nucleus. MILI is responsible for DNA methylation of a larger subset of TE families than MIWI2 is, suggesting that the proteins have independent roles in establishing DNA methylation patterns.
    Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant... more
    Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant transcripts may play a role in the tumor phenotype. Ribonucleic acid-sequencing (RNA-seq) data from breast cancer samples was used to identify an intronic start variant transcript of Acyl-CoA oxidase 2, ACOX2 (ACOX2-i9). Difference in expression between Estrogen Receptor (ER) positive and ER negative patients was assessed by the Wilcoxon rank sum test, and the findings validated in The Cancer Genome Atlas (TCGA) breast cancer dataset (BRCA). ACOX2-i9 expression was also assessed in cell lines using both quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Knock down by short hairpin RNA (shRNA) and colony formation assays were used to determine whether ACOX2-i9 expression would influence cellular fitness. The effect of ACOX2-i9 expression on patient survival was assessed by the Kaplan-Meier survival function, and association to clinical parameters was analyzed using a Fisher exact test. The expression and translation of ACOX2-i9 into a 25 kDa protein was demonstrated in HepG2 cells as well as in several breast cancer cell lines. shRNA knock down of the ACOX2-i9 variant resulted in decreased cell viability of T47D and MDA-MB 436 cells. Moreover, expression of ACOX2-i9 was shown to be estrogen regulated, being induced by propyl pyrazoletriol and inhibited by tamoxifen and fulvestrant in ER+ T47D and Mcf-7 cells, but not in the ER- MDA-MB 436 cell line. This variant transcript showed expression predominantly in ER-positive breast tumors as assessed in our initial set of 53 breast cancers and further validated in 87 tumor/normal pairs from the TCGA breast cancer dataset, and expression was associated with better outcome in ER positive patients. ACOX2-i9 is specifically enriched in ER+ breast cancers where expression of the variant is associated with improved outcome. These data identify variant ACOX2 as a potential novel therapeutic biomarker in ER+ breast tumors.
    PIWI proteins and PIWI-interacting RNAs (piRNAs) mediate repression of transposons in the animal gonads. Primary processing converts long single-stranded RNAs into ∼30-nt piRNAs, but their entry into the biogenesis pathway is unknown.... more
    PIWI proteins and PIWI-interacting RNAs (piRNAs) mediate repression of transposons in the animal gonads. Primary processing converts long single-stranded RNAs into ∼30-nt piRNAs, but their entry into the biogenesis pathway is unknown. Here, we demonstrate that an RNA element at the 5' end of a piRNA cluster-which we termed piRNA trigger sequence (PTS)-can induce primary processing of any downstream sequence. We propose that such signals are triggers for the generation of the original pool of piRNAs. We also demonstrate that endonucleolytic cleavage of a transcript by a cytosolic PIWI results in its entry into primary processing, which triggers the generation of non-overlapping, contiguous primary piRNAs in the 3' direction from the target transcript. These piRNAs are loaded into a nuclear PIWI, thereby linking cytoplasmic post-transcriptional silencing to nuclear transcriptional repression.
    Skip to Main Content. ...
    Independent identification of genes in different organisms and assays has led to a multitude of names for each gene. This balkanization makes it difficult to use gene names to locate genomic resources, homologs in other species and... more
    Independent identification of genes in different organisms and assays has led to a multitude of names for each gene. This balkanization makes it difficult to use gene names to locate genomic resources, homologs in other species and relevant publications. We solve the naming problem by collecting data from a variety of sources and building a name-translation database. We have also built a table of homologs across several model organisms: H. sapiens, M. musculus, R. norvegicus, D. melanogaster, C. elegans, S. cerevisiae, S. pombe and A. thaliana. This allows GeneSeer to draw phylogenetic trees and identify the closest homologs. This, in turn, allows the use of names from one species to identify homologous genes in another species. A website http://geneseer.cshl.org/ is connected to the database to allow user-friendly access to our tools and external genomic resources using familiar gene names. GeneSeer allows access to gene information through common names and can map sequences to nam...
    ABSTRACT Orientational ordering transitions in C70 are studied by constructing a Landau free energy in terms of order parameters describing long-range orientational order. This theory predicts that the transition from the orientationally... more
    ABSTRACT Orientational ordering transitions in C70 are studied by constructing a Landau free energy in terms of order parameters describing long-range orientational order. This theory predicts that the transition from the orientationally disordered state into a partially ordered state, where the long axes of the molecules are parallel to one another, is discontinuous with an elastic distortion. Order parameters describing the lower temperature transition, where spinning about the long axis becomes hindered, are also discussed.
    ABSTRACT We determine the allowed structures for orientationally ordered icosahedral molecules on a fcc lattice such that there are four molecules per simple-cubic unit cell. The allowed space groups are Pm3, Pn3, and Pa3. In the latter... more
    ABSTRACT We determine the allowed structures for orientationally ordered icosahedral molecules on a fcc lattice such that there are four molecules per simple-cubic unit cell. The allowed space groups are Pm3, Pn3, and Pa3. In the latter two, an angle of rotation assumes a value not fixed by symmetry. The locations of all 240 atoms in the unit cell as deduced from the powder x-ray data of Heiney et al. are tabulated. We discuss a number of minima in the free energy which correspond to the observed Pa3 structure of solid C60. We introduce orientational order parameters which lead to a Landau free energy, from which we predict that the orientational transition is discontinuous.
    ABSTRACT A symmetry analysis of the 2a phase recently observed in some samples of C60 is presented. This phase is described by a unit cell with eight molecules in inequivalent orientations. We first show that if this structure is assumed... more
    ABSTRACT A symmetry analysis of the 2a phase recently observed in some samples of C60 is presented. This phase is described by a unit cell with eight molecules in inequivalent orientations. We first show that if this structure is assumed to be exactly cubic, there are only three allowed space groups, none of which corresponds to the PA3¯ arrangement of threefold axes previously established for C60 by several groups. Our calculated powder diffraction spectra for these space groups are not consistent with existing experimental data. Second, if the symmetry of the PA3¯ structure is lowered by a doubling of the unit cell, we show that the resulting structure is trigonal, space group R3¯. We calculate powder diffraction spectra for this scenario and thereby place upper limits on both the angular distortion and the trigonal lattice distortion. Third, since the microscopic origin of this distortion probably involves defects of some presently unknown type, we consider a phenomenological scenario for the origin of this trigonal distortion. Within this scenario, we study the symmetry of the interactions needed to explain this structure. We start by giving an analysis of the structural distortion within harmonic lattice dynamics. However, to obtain the correct (R3¯) symmetry structure we were forced to study the cubic coupling between zone-corner librons and macroscopic strains. In this way we relate the development of R3¯ symmetry from the PA3¯ structure in terms of a phenomenological model of lattice dynamics. Fourth, we extend the above arguments to construct a Landau theory for the hypothesized PA3¯-->R3¯ phase transition, which occurs as a function of the concentration of the presumed defects. The resulting free energy has no cubic terms (so the transition can be continuous) but has five fourth-order invariants.
    ABSTRACT We construct the most general effective Hamiltonian for the C70 solid and study the long-wavelength dynamics of the system near the high-temperature orientational ordering phase transition. We derive neutron scattering cross... more
    ABSTRACT We construct the most general effective Hamiltonian for the C70 solid and study the long-wavelength dynamics of the system near the high-temperature orientational ordering phase transition. We derive neutron scattering cross sections, NMR line shifts, and T1 from our theory and suggest some experiments to further constrain our Hamiltonian.
    Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are approximately 22-23 nucleotides (nt), ubiquitously expressed small RNAs that are sequentially... more
    Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are approximately 22-23 nucleotides (nt), ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of approximately 24-28 nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These approximately 21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-b...
    Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple... more
    Eukaryotic cells carry two genomes, nuclear (nDNA) and mitochondrial (mtDNA), which are ostensibly decoupled in their replication, segregation and inheritance. It is increasingly appreciated that heteroplasmy, the occurrence of multiple mtDNA haplotypes in a cell, plays an important biological role, but its features are not well understood. Accurately determining the diversity of mtDNA has been difficult, due to the relatively small amount of mtDNA in each cell (<1% of the total DNA), the intercellular variability of mtDNA content and mtDNA pseudogenes (Numts) in nDNA. To understand the nature of heteroplasmy, we developed Mseek, a novel technique to purify and sequence mtDNA. Mseek yields high purity (>90%) mtDNA and its ability to detect rare variants is limited only by sequencing depth, providing unprecedented sensitivity and specificity. Using Mseek, we confirmed the ubiquity of heteroplasmy by analyzing mtDNA from a diverse set of cell lines and human samples. Applying Ms...
    Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will... more
    Bacillus alcalophilus AV1934, isolated from human feces, was described in 1934 before microbiome studies and recent indications of novel potassium ion coupling to motility in this extremophile. Here, we report draft sequences that will facilitate an examination of whether that coupling is part of a larger cycle of potassium ion-coupled transporters.
    Elizabeth P. Murchison1, Pouya Kheradpour2, Ravi Sachidanandam1, Carly Smith1, Zhenyu Xuan1, Manolis Kellis2,3, Frank Grűtzner4, Alexander Stark2,3, and Gregory J. Hannon1* ... 1Watson School of Biological Sciences Howard Hughes Medical... more
    Elizabeth P. Murchison1, Pouya Kheradpour2, Ravi Sachidanandam1, Carly Smith1, Zhenyu Xuan1, Manolis Kellis2,3, Frank Grűtzner4, Alexander Stark2,3, and Gregory J. Hannon1* ... 1Watson School of Biological Sciences Howard Hughes Medical Institute Cold Spring ...
    Research Interests:
    We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth cuprates R2CuO4 (R=Nd, Pr, and Sm). It is found that most of the magnetic properties are mainly due to the coupling between the copper and... more
    We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth cuprates R2CuO4 (R=Nd, Pr, and Sm). It is found that most of the magnetic properties are mainly due to the coupling between the copper and rare-earth magnetic subsystem which exhibits a large single-ion anisotropy. This anisotropy prefers ordering of rare-earth moments along [100] for R=Pr and Nd
    RNA interference (RNAi) is now a popular method for silencing gene expression in a variety of systems. RNAi methods use double-stranded RNAs (dsRNAs) to target complementary RNAs for destruction. In mammalian systems, very short dsRNAs... more
    RNA interference (RNAi) is now a popular method for silencing gene expression in a variety of systems. RNAi methods use double-stranded RNAs (dsRNAs) to target complementary RNAs for destruction. In mammalian systems, very short dsRNAs (22-25 bp) such as short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) are used to avoid endogenous nonspecific antiviral responses that target longer dsRNAs. siRNAs elicit a transient silencing response, while shRNAs can be expressed continuously to establish stable gene silencing. shRNAs can be introduced into cells and animals using a variety of standard vectors as well as retroviral or lentiviral expression systems. This chapter describes the design, construction, validation, and use of shRNAs for silencing genes. We report our results from testing a variety of shRNA design features and shRNA expression vectors. We also provide methods that use shRNAs to permit different levels of gene expression. Additionally, we discuss some aspects important for constructing an information pipeline to support development of a large shRNA library.
    Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called... more
    Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.
    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization,... more
    The exon junction complex (EJC) is a highly conserved ribonucleoprotein complex that binds RNAs during splicing and remains associated with them following export to the cytoplasm. While the role of this complex in mRNA localization, translation, and degradation has been well characterized, its mechanism of action in splicing a subset of Drosophila and human transcripts remains to be elucidated. Here, we describe a novel function for the EJC and its splicing subunit, RnpS1, in preventing transposon accumulation in both Drosophila germline and surrounding somatic follicle cells. This function is mediated specifically through the control of piwi transcript splicing, where, in the absence of RnpS1, the fourth intron of piwi is retained. This intron contains a weak polypyrimidine tract that is sufficient to confer dependence on RnpS1. Finally, we demonstrate that RnpS1-dependent removal of this intron requires splicing of the flanking introns, suggesting a model in which the EJC facilitates the splicing of weak introns following its initial deposition at adjacent exon junctions. These data demonstrate a novel role for the EJC in regulating piwi intron excision and provide a mechanism for its function during splicing.
    Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic... more
    Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5' sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons.
    Microarray experiments, as well as other genomic analyses, often result in large gene sets containing up to several hundred genes. The biological significance of such sets of genes is, usually, not readily apparent. Identification of the... more
    Microarray experiments, as well as other genomic analyses, often result in large gene sets containing up to several hundred genes. The biological significance of such sets of genes is, usually, not readily apparent. Identification of the functions of the genes in the set can help highlight features of interest. The Gene Ontology Consortium 1 has annotated genes in several model organisms using a controlled vocabulary of terms and placed the terms on a Gene Ontology (GO), which comprises three disjoint hierarchies for Molecular functions, Biological processes and Cellular locations. The annotations can be used to identify functions that are enriched in the set, but this analysis can be misleading since the underlying distribution of genes among various functions is not uniform. For example, a large number of genes in a set might be kinases just because the genome contains many kinases. We use the Gene Ontology hierarchy and the annotations to pick significant functions and pathways b...

    And 83 more