Skip to main content
Michelle Sapitang

    Michelle Sapitang

    The aim of this study is to accurately forecast the changes in water level of a reservoir located in Malaysia with two different scenarios; Scenario 1 (SC1) includes rainfall and water level as input and Scenario 2 (SC2) includes... more
    The aim of this study is to accurately forecast the changes in water level of a reservoir located in Malaysia with two different scenarios; Scenario 1 (SC1) includes rainfall and water level as input and Scenario 2 (SC2) includes rainfall, water level, and sent out. Different time horizons (one day ahead to seven days) will be investigated to check the accuracy of the proposed models. In this study, four supervised machine learning algorithms for both scenarios were proposed such as Boosted Decision Tree Regression (BDTR), Decision Forest Regression (DFR), Bayesian Linear Regression (BLR) and Neural Network Regression (NNR). Eighty percent of the total data were used for training the datasets while 20% for the dataset used for testing. The models’ performance is evaluated using five statistical indexes; the Correlation Coefficient (R2), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE), and Relative Squared Error (RSE). The findings showed that ...
    This study aims to investigate the impact of meteorological parameters such as wind direction, wind speed, rainfall, and mean cloud cover on sea-level rise projections for different time horizons—2019, 2023, 2028, 2048, and 2068—at three... more
    This study aims to investigate the impact of meteorological parameters such as wind direction, wind speed, rainfall, and mean cloud cover on sea-level rise projections for different time horizons—2019, 2023, 2028, 2048, and 2068—at three stations located in Kudat, Sandakan, and Kota Kinabalu, which are districts in the state of Sabah, Malaysia. Herein, two different scenarios, scenario1 (SC1) and scenario2 (SC2), were investigated, with each scenario comprising a different combination of input parameters. This study proposes two artificial intelligence techniques: a multilayer perceptron neural network (MLP-ANN) and an adaptive neuro-fuzzy inference system (ANFIS). Furthermore, three evaluation indexes were adopted to assess the performance of the proposed models. These indexes are the correlation coefficient, root mean square error, and scatter index. The trial and error method were used to tune the hyperparameters: the number of neurons in the hidden layer, training algorithms, tr...