Skip to main content

    Laurent Ailleres

    Purpose – The purpose of this paper is to develop a three dimensional (3D) geological model, based on geographic information system (GIS), of the Barwon Downs Graben aquifer system in Victoria, Australia, and to visualize the complex... more
    Purpose – The purpose of this paper is to develop a three dimensional (3D) geological model, based on geographic information system (GIS), of the Barwon Downs Graben aquifer system in Victoria, Australia, and to visualize the complex geometry as a decision support tool for sustainable water management. Design/methodology/approach – A 3D visualization of the aquifer is completed, based on subsurface
    The inversion of multiple geoscientific datasets to define structures in hard rock terrains has for the most part been limited to geophysical methods supported by rock property constraints. In this paper we expand the range of constraints... more
    The inversion of multiple geoscientific datasets to define structures in hard rock terrains has for the most part been limited to geophysical methods supported by rock property constraints. In this paper we expand the range of constraints available to geological modellers by defining a series of misfit functions that are used to define the quality of a given geological model with respect to the available geological data. These misfit functions encompass both spatial and temporal observations, and include primary data such as the location of an outcrop or bore hole location of a given rock type, the orientation of its different generations of foliations, as well as secondary geologic observations such as age relationships. When we combine geologic conditions with geophysical misfit functions, which already exist for many geophysical measures, we have the potential to better constrain two- and 3D models of the Earth. As a first test, a subset of these misfit functions are applied to a set of synthetic three-dimensional volumetric models built with an implicit surface modelling scheme. By perturbing the input structural data within a narrow range, we can simulate a range of significantly different three-dimensional models, for which we can then apply both geological and geophysical misfit functions. Several joint geological/geophysical inversion schemes may be developed based on this methodology, with the ultimate goal being an inversion scheme that simultaneously minimizes both geological and geophysical misfit.
    We introduce a novel approach to analyse and assess the structural framework of ore deposits that fully integrates 3D implicit modelling in data-rich environments with field observations. We apply this approach to the early Palaeozoic... more
    We introduce a novel approach to analyse and assess the structural framework of ore deposits that fully integrates 3D implicit modelling in data-rich environments with field observations. We apply this approach to the early Palaeozoic Navachab gold deposit which is located in the Damara orogenic belt, Namibia. Compared to traditional modelling methods, 3D implicit modelling reduces user-based modelling bias by generating open or closed surfaces from geochemical, lithological or structural data without manual digitisation and linkage of sections or level plans. Instead, a mathematically defined spatial interpolation is used to generate 3D models that show trends and patterns that are embedded in large drillhole datasets. In our 3D implicit model of the Navachab gold deposit, distinctive high-grade mineralisation trends were identified and directly related to structures observed in the field. The 3D implicit model and field data suggest that auriferous semi-massive sulphide ore shoots formed near the inflection line of the steep limb of a regional scale dome, where shear strain reached peak values during fold amplification. This setting generated efficient conduits and traps for hydrothermal fluids and associated mineralisation that led to the formation of the main ore shoots in the deposit. Both bedding-parallel and highly discordant sets of auriferous quartz-sulphide veins are interpreted to have formed during the later lock-up stage of the regional scale dome. Additionally, pegmatite dykes crosscut and remobilise gold mineralisation at the deposit scale and appear to be related to a younger joint set. We propose that kilometre-scale active folding is an important deformation mechanism that influences the spatial distribution and orientation of mineralisation in ore deposits by forming structures (traps and pathways for fluids) at different preferred sites and orientations. We also propose that areas that experience high shear strain, located along the inflection lines of folds can act as preferred sites for syn-deformational hydrothermal mineralisation and should be targeted for regional scale exploration in fold and thrust belts. Our research also suggests that examination of existing drillhole datasets using 3D implicit modelling is a powerful tool for spatial analysis of mineralisation patterns. When combined with fieldwork, this approach has the potential to improve structural understanding of a variety of ore deposits.
    Research Interests: