Skip to main content

    Ketty Leto

    Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors... more
    Cerebellar GABAergic interneurons in mouse comprise multiple subsets of morphologically and neurochemically distinct phenotypes located at strategic nodes of cerebellar local circuits. These cells are produced by common progenitors deriving from the ventricular epithelium during embryogenesis and from the prospective white matter (PWM) during postnatal development. However, it is not clear whether these progenitors are also shared by other cerebellar lineages and whether germinative sites different from the PWM originate inhibitory interneurons. Indeed, the postnatal cerebellum hosts another germinal site along the Purkinje cell layer (PCL), in which Bergmann glia are generated up to first the postnatal weeks, which was proposed to be neurogenic. Both PCL and PWM comprise precursors displaying traits of juvenile astroglia and neural stem cell markers. First, we examine the proliferative and fate potential of these niches, showing that different proliferative dynamics regulate progen...
    Different cerebellar phenotypes are generated according to a precise spatiotemporal schedule, in which projection neurons precede local interneurons. Glutamatergic neurons develop from the rhombic lip, whereas GABAergic neurons originate... more
    Different cerebellar phenotypes are generated according to a precise spatiotemporal schedule, in which projection neurons precede local interneurons. Glutamatergic neurons develop from the rhombic lip, whereas GABAergic neurons originate from the ventricular neuroepithelium. Progenitors in these germinal layers are committed toward specific phenotypes already at early ontogenetic stages. GABAergic interneurons are thought to derive from a subset of ventricular zone cells, which migrate in the white matter and proliferate up to postnatal life. During this period, different interneuron categories are produced according to an inside-out sequence, from the deep nuclei to the molecular layer (we show here that nuclear interneurons are also born during late embryonic and early postnatal days, after glutamatergic and GABAergic projection neurons). To ask whether distinct interneuron phenotypes share common precursors or derive from multiple fate-restricted progenitors, we examined the behavior of embryonic and postnatal rat cerebellar cells heterotopically/heterochronically transplanted to syngenic hosts. In all conditions, donor cells achieved a high degree of integration in the cerebellar cortex and deep nuclei and acquired GABAergic interneuron phenotypes appropriate for the host age and engraftment site. Therefore, contrary to other cerebellar types, which derive from dedicated precursors, GABAergic interneurons are produced by a common pool of progenitors, which maintain their full developmental potentialities up to late ontogenetic stages and adopt mature identities in response to local instructive cues. In this way, the numbers and types of inhibitory interneurons can be set by spatiotemporally patterned signals to match the functional requirements of developing cerebellar circuits.
    Cerebellar GABAergic projection neurons and interneurons originate from the ventricular neuroepithelium of the cerebellar primordium. However, while projection neurons are born within this germinal layer, interneurons derive from... more
    Cerebellar GABAergic projection neurons and interneurons originate from the ventricular neuroepithelium of the cerebellar primordium. However, while projection neurons are born within this germinal layer, interneurons derive from progenitors that delaminate into the prospective white matter. In spite of this common origin, the two main classes of GABAergic neurons are generated according to distinct strategies. Projection neurons are committed to their fate at early ontogenetic stages and acquire their mature phenotypes through cell-autonomous mechanisms. On the contrary, the different categories of cerebellar interneurons derive from a single pool of multipotent progenitors, whose fate choices, production rates and differentiation schedules are strongly influenced by environmental cues.
    CNS repair by cell transplantation requires new neurons to integrate into complex recipient networks. We assessed how the migratory route of transplanted granule neurons and the developmental stage of the host rat cerebellum influence... more
    CNS repair by cell transplantation requires new neurons to integrate into complex recipient networks. We assessed how the migratory route of transplanted granule neurons and the developmental stage of the host rat cerebellum influence engraftment. In both embryonic and postnatal hosts, granule cells can enter the cerebellar cortex and achieve correct placement along their natural migratory pathway. Donor neurons can also reach the internal granular layer from the white matter and integrate following an unusual developmental pattern. Although the frequency of correct positioning declines in parallel with cortical development, in mature recipients correct homing is more frequent through the unusual path. Following depletion of granule cell precursors in the host, more granule neurons engraft, but their ability for achieving correct placement is unchanged. Therefore, while the cerebellar environment remains receptive for granule cells even after the end of development, their full integration is partially hindered by the mature cortical architecture.
    The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise... more
    The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2(-/-) interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.