Skip to main content

    Gadi Schuster

    The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-binding proteins form complexes in proximity to the... more
    The emergence of chlorophyll-containing light-harvesting complexes (LHCs) was a crucial milestone in the evolution of photosynthetic eukaryotic organisms. Light-harvesting chlorophyll-binding proteins form complexes in proximity to the reaction centres of photosystems I and II and serve as an antenna, funnelling the harvested light energy towards the reaction centres, facilitating photochemical quenching, thereby optimizing photosynthesis. It is now generally accepted that the LHC proteins evolved from LHC-like proteins, a diverse family of proteins containing up to four transmembrane helices. Interestingly, LHC-like proteins do not participate in light harvesting to elevate photosynthesis activity under low light. Instead, they protect the photosystems by dissipating excess energy and taking part in non-photochemical quenching processes. Although there is evidence that LHC-like proteins are crucial factors of photoprotection, the roles of only a few of them, mainly the stress-relat...
    The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Life on earth depends on photosynthesis, the major mechanism for biological conversion of light energy into... more
    The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Life on earth depends on photosynthesis, the major mechanism for biological conversion of light energy into chemical energy. Indeed, billions of years of evolution and adaptation to extreme environmental habitats have resulted in highly efficient light-harvesting and photochemical systems in the photosynthetic organisms that can be found in almost every ecological habitat of our world. In harnessing photosynthesis to produce green energy, the native photosynthetic system is interfaced with electrodes and electron mediators to yield bio-photoelectrochemical cells (BPECs) that transform light energy into electrical power. BPECs utilizing plants, seaweeds, unicellular photosynthetic microorganisms, thylakoid membranes or purified complexes, have been studied in attempts to construct efficient and non-polluting BPECs to produce electricity or hydrogen for use as ...
    New potential for engineering chloroplasts to express novel traits has stimulated research into relevant techniques and genetic processes, including plastid transformation and gene regulation. This BARD-funded research dealt with the... more
    New potential for engineering chloroplasts to express novel traits has stimulated research into relevant techniques and genetic processes, including plastid transformation and gene regulation. This BARD-funded research dealt with the mechanisms that influence chloroplast RNA accumulation, and thus gene expression. Previous work on cpRNA catabolism has elucidated a pathway initiated by endonucleolytic cleavage, followed by polyadenylation and exonucleolytic degradation. A major player in this process is the nucleus-encoded exoribo-nuclease/polymerase polynucleotide phosphorylase (PNPase). Biochemical characterization of PNPase has revealed a modular structure that controls its RNA synthesis and degradation activities, which in turn are responsive to the phosphate (P) concentration. During the funding period, new insights emerged into the molecular mechanism of RNA metabolism in the chloroplast and cyanobacteria, suggesting strategies for improving agriculturally-important plants or p...
    The P30 protein of tobacco mosaic virus (TMV) is required for cell to cell movement of viral RNA, which presumably occurs through plant intercellular connections, the plasmodesmata. The mechanism by which P30 mediates transfer of TMV RNA... more
    The P30 protein of tobacco mosaic virus (TMV) is required for cell to cell movement of viral RNA, which presumably occurs through plant intercellular connections, the plasmodesmata. The mechanism by which P30 mediates transfer of TMV RNA molecules through plasmodesmata channels is unknown. We have identified P30 as an RNA and single-stranded (ss) DNA binding protein. Binding of purified P30 to ss nucleic acids is strong, highly cooperative, and sequence nonspecific with a minimal binding site of 4-7 nucleotides per P30 monomer. In-frame deletions across P30 were used to localize the ss nucleic acid binding domain to within amino acid residues 65-86 of the protein. We propose that binding of P30 to TMV RNA creates an unfolded protein-RNA complex that functions as an intermediate in virus cell to cell movement through plasmodesmata.
    The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in non- production of the essential photosynthetic cytochrome b6f complex.... more
    The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in non- production of the essential photosynthetic cytochrome b6f complex. The nucleus-encoded HCF152 gene was identified to encode a pentatricopeptide repeat (PPR) protein com- posed primarily of 12 PPR motifs, similar to other proteins of this family that were identified in mutants
    RNA polyadenylation occurs in most forms of life, excluding a small number of biological systems. This posttranscriptional modification undertakes two roles, both of which influence the stability of the polyadenylated transcript. One is... more
    RNA polyadenylation occurs in most forms of life, excluding a small number of biological systems. This posttranscriptional modification undertakes two roles, both of which influence the stability of the polyadenylated transcript. One is associated with the mature 3' ends of nucleus-encoded mRNAs in eukaryotic cells and is important for nuclear exit, translatability, and longevity. The second form of RNA polyadenylation assumes an almost opposite role; it is termed 'transient' and serves to mediate the degradation of RNA. Poly(A)-assisted RNA decay pathways were once thought to occur only in prokaryotes/organelles but are now known to be a common phenomenon, present in bacteria, organelles, archaea, and the nucleus and cytoplasm of eukaryotic cells, regardless of the fact that in some of these systems, stable polyadenylation exists as well. This article will summarize the current knowledge of polyadenylation and degradation factors involved in poly(A)-assisted RNA decay in the domains of life, focusing mainly on that which occurs in prokaryotes and organelles. In addition, it will offer an evolutionary view of the development of RNA polyadenylation and degradation and the cellular machinery that is involved.
    Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have... more
    Thylakoid membranes contain the redox active complexes catalyzing the light-dependent reactions of photosynthesis in cyanobacteria, algae and plants. Crude thylakoid membranes or purified photosystems from different organisms have previously been utilized for generation of electrical power and/or fuels. Here we investigate the electron transferability from thylakoid preparations from plants or the cyanobacterium Synechocystis. We show that upon illumination, crude Synechocystis thylakoids can reduce cytochrome c. In addition, this crude preparation can transfer electrons to a graphite electrode, producing an unmediated photocurrent of 15 μA/cm2. Photocurrent could be obtained in the presence of the PSII inhibitor DCMU, indicating that the source of electrons is QA, the primary Photosystem II acceptor. In contrast, thylakoids purified from plants could not reduce cyt c, nor produced a photocurrent in the photocell in the presence of DCMU. The production of significant photocurrent (100 μA/cm2) from plant thylakoids required the addition of the soluble electron mediator DCBQ. Furthermore, we demonstrate that use of crude thylakoids from the D1-K238E mutant in Synechocystis resulted in improved electron transferability, increasing the direct photocurrent to 35 μA/cm2. Applying the analogous mutation to tobacco plants did not achieve an equivalent effect. While electron abstraction from crude thylakoids of cyanobacteria or plants is feasible, we conclude that the site of the abstraction of the electrons from the thylakoids, the architecture of the thylakoid preparations influence the site of the electron abstraction, as well as the transfer pathway to the electrode. This dictates the use of different strategies for production of sustainable electrical current from photosynthetic thylakoid membranes of cyanobacteria or higher plants.
    The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals... more
    The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific anti...
    Many techniques that are used to characterize individual RNA molecules can potentially alter the original transcript sequence or its posttranscriptional modifications, such as polyadenylation. Methods that are designed to define the ends... more
    Many techniques that are used to characterize individual RNA molecules can potentially alter the original transcript sequence or its posttranscriptional modifications, such as polyadenylation. Methods that are designed to define the ends of an RNA molecule, for example, oligonucleotide ligation, avoid altering the transcript sequence but can usually fulfill only one objective per experiment (e.g., define the 5' or the 3' end). In contrast, not only does circularized reverse transcription coupled with PCR (cRT-PCR) preserve the original 5' and 3' ends of the transcript and posttranscriptionally added extensions, but also the material from one experimental procedure can be utilized in order to characterize both the 5' and 3' ends. Furthermore, if suitable oligonucleotide primers are designed, cRT-PCR can be used to isolate truncated, adenylated (and nonadenylated) molecules that are intermediates in RNA decay (Slomovic and Schuster, 2008).
    The posttranscriptional modification of RNA by polyadenylation serves various purposes, among them to assist in RNA degradation (see an alternative protocol for measuring RNA degradation on Method for measuring mRNA decay rate in... more
    The posttranscriptional modification of RNA by polyadenylation serves various purposes, among them to assist in RNA degradation (see an alternative protocol for measuring RNA degradation on Method for measuring mRNA decay rate in Saccharomyces cerevisiae). This function, once thought to occur in prokaryotic or organellar systems alone, is now known to operate in the nuclei and cytoplasm of eukaryotes as well (Slomovic et al., 2008; Slomovic et al., 2010; Houseley and Tollervey, 2009; Deutscher, 2006). Poly(A)-assisted RNA decay begins with the endonucleolytic cleavage of the transcript. Following this, a poly(A) or oligo(A) tail is added to the 3' end of the cleavage product. This tag serves as a 'landing pad' for 3'-5' exoribonucleases that then begin to digest the RNA fragment. Truncated RNA molecules that have undergone tail addition but have yet to be degraded are called degradation intermediates. The detection of such intermediates is considered a tell-tale ...
    The posttranscriptional addition of poly(A) extensions to RNA is a phenomenon common to almost all organisms. In eukaryotes, a stable poly(A) tail is added to the 3'-end of most nucleus-encoded mRNAs, as well as to... more
    The posttranscriptional addition of poly(A) extensions to RNA is a phenomenon common to almost all organisms. In eukaryotes, a stable poly(A) tail is added to the 3'-end of most nucleus-encoded mRNAs, as well as to mitochondrion-encoded transcripts in animal cells. In prokaryotes and organelles, RNA molecules are polyadenylated as part of a polyadenylation-stimulated RNA degradation pathway. In addition, polyadenylation of nucleus-encoded transcripts in yeast and human cells was recently reported to promote RNA degradation. Not only homopolymeric poly(A) tails, composed exclusively of adenosines, but also heteropolymeric poly(A)-rich extensions, which include the other three nucleotides as well, have been observed in bacteria, archaea, chloroplasts, and human cells. In most instances, the detection of nonabundant truncated transcripts with posttranscriptionally added poly(A) or poly(A)-rich extensions serves as a telltale sign of the presence of a polyadenylation-stimulated RNA ...
    The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in... more
    The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45 degrees C induces the expression of 10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fract...
    The nuclear-coded 22 kd heat-shock protein (HSP-22) which is transported into the chloroplast and localized in the thylakoids was further characterized and found to be located in the grana lamellae (stacked thylakoids) as an extrinsic... more
    The nuclear-coded 22 kd heat-shock protein (HSP-22) which is transported into the chloroplast and localized in the thylakoids was further characterized and found to be located in the grana lamellae (stacked thylakoids) as an extrinsic protein in the green alga Chlamydomonas reinhardtii. Inhibition of photosynthetic electron flow during heat-shock of Chlamydomonas cells was light-dependent, occurring at low-light intensities (<100 W/m) as compared with photoinhibition at 25 degrees C (>1000 W/m). The site of the damage was localized at the photosystem II (PS II) reaction center. The damage was drastically increased when heat-shock treatment was carried out in the presence of the 80S ribosomal translation inhibitor, cycloheximide (CHI). Pre-incubation of Chlamydomonas cells at 42 degrees C resulted in partial protection against photoinhibition during heat-shock, as compared with cells pre-incubated at 42 degrees C in the presence of CHI which, therefore, did not translate the he...
    In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This... more
    In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can form an enzyme complex similar to the E. coli degradosome. Biochemical and mass-spectrometric analysis showed, however, that PNPase is the only protein associated with the 580-600 kDa complex. Similarly, a purified recombinant chloroplast PNPase also eluted as a 580-600 kDa complex after gel filtration chromatography. These results suggest that chloroplast PNPase exists as a homo-multimer complex. No other chloroplast proteins were found to associate with chloroplast PNPase during affinity chroma...
    The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic... more
    The molecular mechanism of mRNA degradation in the chloroplast consists of sequential events including endonucleolytic cleavage, the addition of poly(A)-rich sequences to the endonucleolytic cleavage products, and exonucleolytic degradation by polynucleotide phosphorylase (PNPase). In Escherichia coli, polyadenylation is performed mainly by poly(A)-polymerase (PAP) I or by PNPase in its absence. While trying to purify the chloroplast PAP by following in vitro polyadenylation activity, it was found to copurify with PNPase and indeed could not be separated from it. Purified PNPase was able to polyadenylate RNA molecules with an activity similar to that of lysed chloroplasts. Both activities use ADP much more effectively than ATP and are inhibited by stem-loop structures. The activity of PNPase was directed to RNA degradation or polymerization by manipulating physiologically relevant concentrations of P(i) and ADP. As expected of a phosphorylase, P(i) enhanced degradation, whereas ADP ...
    The 3' ends of chloroplast mRNAs are produced by the processing of longer precursors. The 3' ends of most plastid mRNAs are located at, or several nucleotides downstream of, stem-loop structures, which act as 3'-end-processing... more
    The 3' ends of chloroplast mRNAs are produced by the processing of longer precursors. The 3' ends of most plastid mRNAs are located at, or several nucleotides downstream of, stem-loop structures, which act as 3'-end-processing signals and RNA stability elements. In chloroplasts of the green alga Chlamydomonas reinhardtii, 3'-end maturation of atpB mRNA involves endonucleolytic cleavage of the pre-mRNA at an AU-rich site located about 10 nucleotides downstream of the stem-loop structure. This cleavage is followed by exonucleolytic resection to generate the mature 3' end. In order to define critical nucleotides of the endonucleolytic cleavage site, we mutated its sequence. Incubation of synthetic atpB pre-RNAs containing these mutations in a chloroplast protein extract resulted in the accumulation of 3'-end-processed products. However, in two cases where the AU-rich sequence of this site was replaced with a GC-rich one, the 3' end of the stable processing p...
    3'-end processing of nucleus-encoded mRNAs includes the addition of a poly(A) tail that is important for translation initiation. Since the vast majority of chloroplast mRNAs acquire their 3' termini by processing yet are not... more
    3'-end processing of nucleus-encoded mRNAs includes the addition of a poly(A) tail that is important for translation initiation. Since the vast majority of chloroplast mRNAs acquire their 3' termini by processing yet are not polyadenylated, we asked whether 3' end maturation plays a role in chloroplast translation. A general characteristic of the 3' untranslated regions of chloroplast mRNAs is an inverted repeat (IR) sequence that can fold into a stem-loop structure. These stem-loops and their flanking sequences serve as RNA 3'-end formation signals. Deletion of the Chlamydomonas chloroplast atpB 3' IR in strain Delta26 results in reduced accumulation of atpB transcripts and the chloroplast ATPase beta-subunit, leading to weakly photosynthetic growth. Of the residual atpB mRNA in Delta26, approximately 1% accumulates as a discrete RNA of wild-type size, while the remainder is heterogeneous in length due to the lack of normal 3' end maturation. In this wor...
    A general characteristic of the 3'-untranslated regions (3' UTRs) of plastid mRNAs is an inverted repeat (IR) sequence that can fold into a stem-loop structure. These stem-loops are RNA 3'-end processing signals and... more
    A general characteristic of the 3'-untranslated regions (3' UTRs) of plastid mRNAs is an inverted repeat (IR) sequence that can fold into a stem-loop structure. These stem-loops are RNA 3'-end processing signals and determinants of mRNA stability, not transcription terminators. Incubation of synthetic RNAs corresponding to the 3' UTRs of Chlamydomonas chloroplast genes atpB and petD with a chloroplast protein extract resulted in the accumulation of stable processing products. Synthetic RNAs of the petA 3' UTR and the antisense strand of atpB 3' UTR were degraded in the extract. To examine 3' UTR function in vivo, the atpB 3' UTR was replaced with the 3' UTR sequences of the Chlamydomonas chloroplast genes petD, petD plus trnR plus trnR, rbcL, petA and E. coli thrA by biolistic transformation of Chlamydomonas chloroplasts. Each 3' UTR was inserted in both the sense and antisense orientations. The accumulation of both total atpB mRNA and ATPase ...
    In the absence of efficient transcription termination correct 3'-end processing is an essential step in the synthesis of stable chloroplast mRNAs in higher plants. We show here that 3'-end processing in vitro involves... more
    In the absence of efficient transcription termination correct 3'-end processing is an essential step in the synthesis of stable chloroplast mRNAs in higher plants. We show here that 3'-end processing in vitro involves endonucleolytic cleavage downstream from the mature terminus, followed by exonucleolytic processing to a stem-loop within the 3'-untranslated region. These processing steps require a high molecular weight complex that contains both endoribonucleases and an exoribonuclease. In the presence of ancillary RNA binding proteins the complex correctly processes the 3'-end of precursor RNA. In the absence of these ancillary proteins 3'-end maturation is prevented and plastid mRNAs are degraded. Based on these results we propose a novel mechanism for the regulation of mRNA 3'-end processing and stability in chloroplasts.
    The events that follow the import of pLHCPIIb, the apoprotein precursor of the major light-harvesting complex of photosystem II, were studied in intact pea chloroplasts. The distribution of the events of insertion into the membrane, and... more
    The events that follow the import of pLHCPIIb, the apoprotein precursor of the major light-harvesting complex of photosystem II, were studied in intact pea chloroplasts. The distribution of the events of insertion into the membrane, and processing, to yield the mature form (LHCP) between stromal and granal lamellae regions of the thylakoids were followed. pLHCP was preferentially inserted into stromal lamellae (SL) from which it migrated to granal lamellae (GL). Migration occurred before or after processing, suggesting that migration and processing are independent of each other. When migration was slowed down, LHCP accumulated in SL. Prolonged inhibition of migration induced degradation of LHCP that had accumulated in SL, whereas inhibition of processing did not affect the migration of pLHCP into GL. A small difference in electrophoretic mobility was noted between LHCP in SL and in GL. The predominant mature form in SL migrated more slowly than LHCP from GL. When thylakoids were sub...
    Chloroplasts were acquired by eukaryotic cells through endosymbiosis and have retained their own gene expression machinery. One hallmark of chloroplast gene regulation is the predominance of posttranscriptional control, which is exerted... more
    Chloroplasts were acquired by eukaryotic cells through endosymbiosis and have retained their own gene expression machinery. One hallmark of chloroplast gene regulation is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on how chloroplast mRNA stability is regulated, through an examination of poly(A)-dependent and independent pathways. The poly(A)-dependent pathway is catalyzed by polynucleotide phosphorylase (PNPase), which both adds and degrades destabilizing poly(A) tails, whereas RNase II and PNPase may both participate in the poly(A)-independent pathway. Each system is initiated through endonucleolytic cleavages that remove 3' stem-loop structures, which are catalyzed by the related proteins CSP41a and CSP41b and possibly an RNase E-like enzyme. Overall, chloroplasts have retained the prokaryotic endonuclease-exonuclease RNA degradation system despite evolution in the number and character of t...
    Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of... more
    Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast,...
    Ribonuclease J is an essential enzyme, and the Bacillus subtilis ortholog possesses both endoribonuclease and 5' → 3' exoribonuclease activities. Chloroplasts also contain RNase J, which has been postulated to participate, as both... more
    Ribonuclease J is an essential enzyme, and the Bacillus subtilis ortholog possesses both endoribonuclease and 5' → 3' exoribonuclease activities. Chloroplasts also contain RNase J, which has been postulated to participate, as both an exo- and endonuclease, in the maturation of polycistronic mRNAs. Here we have examined recombinant Arabidopsis RNase J and found both 5' → 3' exoribonuclease and endonucleolytic activities. Virus-induced gene silencing was used to reduce RNase J expression in Arabidopsis and Nicotiana benthamiana, leading to chlorosis but surprisingly few disruptions in the cleavage of polycistronic rRNA and mRNA precursors. In contrast, antisense RNAs accumulated massively, suggesting that the failure of chloroplast RNA polymerase to terminate effectively leads to extensive symmetric transcription products that are normally eliminated by RNase J. Mung bean nuclease digestion and polysome analysis revealed that this antisense RNA forms duplexes with sens...
    The conversion of solar energy (SEC) to storable chemical energy by photosynthesis has been performed by photosynthetic organisms, including oxygenic cyanobacteria for over 3 billion years. We have previously shown that crude thylakoid... more
    The conversion of solar energy (SEC) to storable chemical energy by photosynthesis has been performed by photosynthetic organisms, including oxygenic cyanobacteria for over 3 billion years. We have previously shown that crude thylakoid membranes from the cyanobacterium Synechocytis sp. PCC 6803 can reduce the electron transfer (ET) protein cytochrome c even in the presence of the PSII inhibitor DCMU. Mutation of lysine 238 of the Photosystem II D1 protein to glutamic acid increased the cytochrome reduction rates, indicating the possible position of this unknown ET pathway. In this contribution, we show that D1-K238E is rather unique, as other mutations to K238, or to other residues in the same vicinity, are not as successful in cytochrome c reduction. This observation indicates the sensitivity of ET reactions to minor changes. As the next step in obtaining useful SEC from biological material, we describe the use of crude Synechocystis membranes in a bio-photovoltaic cell containing ...
    The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible... more
    The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible for adding poly(A) tails in Chlamydomonas and Arabidopsis organelles, reverse genetic and biochemical approaches were employed. The involvement of candidate enzymes including members of the nucleotidyltransferase (Ntr) family and polynucleotide phosphorylase (PNPase) was examined. For several of the analyzed nuclear-encoded proteins, mitochondrial localization was established and possible dual targeting to mitochondria and chloroplasts could be predicted. We found that certain members of the Ntr family, when expressed in bacteria, displayed poly(A) polymerase (PAP) activity and partially complemented an Escherichia coli strain lacking the endogenous PAP1 enzyme. Other Ntr proteins appeared to be specific for tRNA maturation. When the expression of PNPase was down-regulated by RNAi in Chlamydomonas, very few poly(A) tails were detected in chloroplasts for the atpB transcript, suggesting that this enzyme may be solely responsible for chloroplast polyadenylation activity in this species. Depletion of PNPase did not affect the number or sequence of mitochondrial mRNA poly(A) tails, where unexpectedly we found, in addition to polyadenylation, poly(U)-rich tails. Together, our results identify several Ntr-PAPs and PNPase in organelle polyadenylation, and reveal novel poly(U)-rich sequences in Chlamydomonas mitochondria.
    Correct 3' processing of chloroplast precursor mRNAs (pre-mRNAs) requires a stem-loop structure within the 3' untranslated region. In spinach, a stable 3' stem-loop-protein complex has been... more
    Correct 3' processing of chloroplast precursor mRNAs (pre-mRNAs) requires a stem-loop structure within the 3' untranslated region. In spinach, a stable 3' stem-loop-protein complex has been shown to form in vitro between petD pre-mRNA, encoding subunit IV of the cytochrome b6/f complex, and chloroplast proteins. This complex contains three chloroplast stem-loop binding proteins (CSPs), namely, CSP29, CSP41, and CSP55. Here, we report the purification of CSP41 and cloning of the csp41 gene and show that CSP41 is encoded by a single nuclear gene. Characterization of bacterially expressed CSP41 demonstrates that this protein binds specifically to the 3' stem-loop structure and a downstream AU-rich element of petD pre-mRNA and that its binding affinity is enhanced by associating with CSP55. Our data also show that CSP41 has substantial nonspecific endoribonuclease activity. These data suggest that CSP41 could be involved in 3' processing of petD pre-mRNA and/or in RNA degradation. The fact that different reaction conditions favor RNA binding over ribonuclease activities suggests a possible mode of in vivo regulation.
    The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in nonproduction of the essential photosynthetic cytochrome b6f complex. The... more
    The nonphotosynthetic mutant of Arabidopsis hcf152 is impaired in the processing of the chloroplast polycistronic transcript, psbB-psbT-psbH-petB-petD, resulting in nonproduction of the essential photosynthetic cytochrome b6f complex. The nucleus-encoded HCF152gene was identified to encode a pentatricopeptide repeat (PPR) protein composed primarily of 12 PPR motifs, similar to other proteins of this family that were identified in mutants defected in chloroplast gene expression. To understand the molecular mechanism of how HCF152 modulates chloroplast gene expression, the molecular and biochemical properties should be revealed. To this end, HCF152 and several truncated versions were produced in bacteria and analyzed for RNA-binding and protein-protein interaction. It was found that two HCF152 polypeptides bind to form a homodimer, and that this binding is impaired by a single amino acid substitute near the carboxyl terminus, replacing leucine with proline. Recombinant HCF152 bound with higher affinity RNA molecules, resembling the petB exon-intron junctions, as well as several other molecules. The highest affinity was found to RNA composed of the poly(A) sequence. When truncated proteins composed of different numbers of PPR motifs were analyzed for RNA-binding, it was found that two PPR motifs were required for RNA-binding, but had very low affinity. The affinity to RNA increased significantly when proteins composed of more PPR motifs were analyzed, displaying the highest affinity with the full-length protein composed of 12 PPR motifs. Together, our data characterized the nuclear-encoded HCF152 to be a chloroplast RNA-binding protein that may be involved in the processing or stabilization of the petB transcript by binding to the exon-intron junctions.
    RNA degradation plays an important role in the control of gene expression in all domains of life, including Archaea. While analyzing RNA degradation in different archaea, we faced an interesting situation. The members of a group of... more
    RNA degradation plays an important role in the control of gene expression in all domains of life, including Archaea. While analyzing RNA degradation in different archaea, we faced an interesting situation. The members of a group of methanogenic archaea, including Methanocaldococcus jannaschii, contain neither the archaeal exosome nor RNase II/R homologs. However, looking for potential ribonucleases revealed proteins related to the recently discovered ribonuclease RNase J. RNase J is unique among known ribonucleases because it may combine endo- and 5'→3' exo-ribonucleolytic activities in a single polypeptide. Here, we report the characterization of the ribonuclease activities of three RNase J homologs encoded in the genome of the methanogenic archaeon Methanocaldococcus jannaschii. The analysis of the recombinant archaeal proteins purified from E. coli revealed an optimal activity at 60°C. Whereas mjRNase J1 and -J3 displayed exclusively 5'→3' exonucleolytic activity, mjRNase J2 is an endonuclease with no apparent exonuclease activity. The exonucleolytic activity of both mjRNase J1 and -J3 is enhanced in molecules harboring monophosphate at the 5' end. mjRNase J3, and to some extent mjRNase J2, degrade ssDNA. Together, these results reveal that in archaea lacking the exosome and RNase II/R, RNA and perhaps also DNA are possibly degraded by the coordinated activities of several RNase J proteins. Unlike bacteria, in archaea RNase J proteins provide separately the exo- and endonucleolytic activities that are probably essential for RNA degradation.
    Three classes of RNA, represented by atpB and petD mRNAs, Arg and Glu tRNAs, and 5S rRNA, were found to exist in polyadenylated form in Chlamydomonas reinhardtii chloroplasts. Sequence analysis of cDNA clones derived from reverse... more
    Three classes of RNA, represented by atpB and petD mRNAs, Arg and Glu tRNAs, and 5S rRNA, were found to exist in polyadenylated form in Chlamydomonas reinhardtii chloroplasts. Sequence analysis of cDNA clones derived from reverse transcriptase-polymerase chain reaction protocols used to select polyadenylated RNAs revealed that, at least for the mRNAs and tRNAs, there are three apparent types of polyadenylation. In the first case, the poly(A) tail is added at or near the mature 3' end, even when this follows a strong secondary structure. In the second case, the tail is added to pre-mRNA or pre-tRNA, suggesting a possible competition between polyadenylation and RNA-processing pathways. Finally, in all cases, the poly(A) tail can be added internally, possibly as a part of an RNA-decay pathway. The tails found in Chlamydomonas chloroplasts differ from those of spinach chloroplasts in adenine content, being nearly homopolymeric (>98% adenine) versus 70% in spinach, and are similar in length to those of Escherichia coli, being mostly between 20 and 50 nt. In vitro assays using a Chlamydomonas chloroplast protein extract showed that a 3' end A25 tail was sufficient to stimulate rapid degradation of atpB RNA in vitro, with a lesser effect for petD, and only minor effects on trnE. We therefore propose that polyadenylation contributes to mRNA degradation in Chlamydomonas chloroplasts, but that its effect may vary.
    PNPase is a major exoribonuclease that plays an important role in the degradation, processing, and polyadenylation of RNA in prokaryotes and organelles. This phosphorolytic processive enzyme uses inorganic phosphate and nucleotide... more
    PNPase is a major exoribonuclease that plays an important role in the degradation, processing, and polyadenylation of RNA in prokaryotes and organelles. This phosphorolytic processive enzyme uses inorganic phosphate and nucleotide diphosphate for degradation and polymerization activities, respectively. Its structure and activities are similar to the archaeal exosome complex. The human PNPase was recently localized to the intermembrane space (IMS) of the mitochondria, and is, therefore, most likely not directly involved in RNA metabolism, unlike in bacteria and other organelles. In this work, the degradation, polymerization, and RNA-binding properties of the human PNPase were analyzed and compared to its bacterial and organellar counterparts. Phosphorolytic activity was displayed at lower optimum concentrations of inorganic phosphate. Also, the RNA-binding properties to ribohomopolymers varied significantly from those of its bacterial and organellar enzymes. The purified enzyme did not preferentially bind RNA harboring a poly(A) tail at the 3' end, compared to a molecule lacking this tail. Several site-directed mutations at conserved amino acid positions either eliminated or modified degradation/polymerization activity in different manners than observed for the Escherichia coli PNPase and the archaeal and human exosomes. In light of these results, a possible function of the human PNPase in the mitochondrial IMS is discussed.

    And 51 more