[go: up one dir, main page]

 

Wireless Signal Prediction using Deep Learning Models for WiFi Positioning and Security Concerns

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

5691

Ending Page

Alternative Title

Abstract

Confining wireless signals (WiFi) in specific areas of indoor spaces is an efficient way to protect these networks against unwanted access. Unfortunately, these same WiFi signals can be utilized to track the location of mobile handsets. There is an apparent tradeoff between securing the range of such signals and their use for indoor geolocation purposes. The modeling of wireless signal coverage for both security and geolocation purposes in areas where measurements are difficult to record can be a daunting task. We utilized a deep autoregressive model and a convolutional neural network model trained on a synthetic floor plan dataset to accurately extrapolate signal coverage across such spaces without using specific information about antennae placements or floor plan designs. Computational experiments showed that these data-driven approaches were able to fill the gaps in signal coverage maps accurately.

Description

Keywords

Location Intelligence Research in System Sciences, convolutional neural networks, floor plan dataset, generative models, machine learning, signal prediction

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.