Better polynomials for GNFS - Inria - Institut national de recherche en sciences et technologies du numérique
[go: up one dir, main page]

Article Dans Une Revue Mathematics of Computation Année : 2016
Better polynomials for GNFS
1 ARIC - Arithmetic and Computing (46 Allée d'Italie 69364 Lyon France - France)
"> ARIC - Arithmetic and Computing
2 CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms (615 rue du Jardin Botanique 54600 Villers-lès-Nancy - France)
"> CARAMBA - Cryptology, arithmetic : algebraic methods for better algorithms

Résumé

The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial than the one used for the factorization of RSA-768, and a polynomial for RSA-1024 that outperforms the best published one.
Fichier principal
Vignette du fichier
sopt-20140905.pdf (209.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01089507 , version 1 (01-12-2014)
Identifiants

Citer

Shi Bai, Cyril Bouvier, Alexander Kruppa, Paul Zimmermann. Better polynomials for GNFS. Mathematics of Computation, 2016, 85, pp.12. ⟨10.1090/mcom3048⟩. ⟨hal-01089507⟩
1147 Consultations
839 Téléchargements

Altmetric

Partager

More