
HAL Id: hal-01089507
https://inria.hal.science/hal-01089507v1

Submitted on 1 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Better polynomials for GNFS
Shi Bai, Cyril Bouvier, Alexander Kruppa, Paul Zimmermann

To cite this version:
Shi Bai, Cyril Bouvier, Alexander Kruppa, Paul Zimmermann. Better polynomials for GNFS. Math-
ematics of Computation, 2016, 85, pp.12. �10.1090/mcom3048�. �hal-01089507�

https://inria.hal.science/hal-01089507v1
https://hal.archives-ouvertes.fr


MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

BETTER POLYNOMIALS FOR GNFS

SHI BAI, CYRIL BOUVIER, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

Abstract. The general number field sieve (GNFS) is the most efficient algo-

rithm known for factoring large integers. It consists of several stages, the first
one being polynomial selection. The quality of the selected polynomials can
be modelled in terms of size and root properties. We propose a new kind of
polynomials for GNFS: with a new degree of freedom, we further improve the

size property. We demonstrate the efficiency of our algorithm by exhibiting a
better polynomial than the one used for the factorization of RSA-768, and a
polynomial for RSA-1024 that outperforms the best published one.

1. Introduction to GNFS

The general number field sieve [11] is the most efficient algorithm known for
factoring large integers. It has been used in many record factorizations such as RSA-
704 [3] and RSA-768 [18]. GNFS consists of several stages including polynomial
selection, sieving, filtering, linear algebra and finding square roots.

Let n be the integer to be factored. In polynomial selection, we want to choose
two irreducible and coprime polynomials f(x) and g(x) over Z which share a com-
mon root m modulo n. In practice, the homogenized polynomials F (x, y) and
G(x, y) are often used. We want to find many coprime pairs (a, b) ∈ Z

2 such that
the polynomials values F (a, b) and G(a, b) are simultaneously smooth with respect
to some bounds B1 and B2. An integer is smooth with respect to bound B (or
B-smooth) if none of its prime factors are larger than B. The line sieving and
lattice sieving [17] are commonly used to identify such pairs (a, b).

The running-time of sieving depends on the quality of the chosen polynomials in
polynomial selection, hence many polynomial pairs will be generated and optimized
in order to produce a good one.

This paper proposes a new kind of polynomials for the number field sieve, to-
gether with a corresponding algorithm to generate such polynomials, and exhibits
better polynomials found by this algorithm for RSA challenge numbers.

2. Polynomial selection

For large integers, most methods for polynomial selection [6, 9, 10, 12, 13] in
GNFS use a linear polynomial for g(x) and a nonlinear one for f(x) (degree 6
in latest records). The standard method to generate such polynomial pairs is to

expand n in base-(m1,m2) so n =
∑d

i=0 cim
i
1m

d−i
2 . The polynomial pair is given

by f(x) =
∑d

i=0 cix
i and g(x) = m2x−m1.

2010 Mathematics Subject Classification. Primary 11Y05, 11Y16.

c©XXXX American Mathematical Society

1



2 SHI BAI, CYRIL BOUVIER, ALEXANDER KRUPPA, AND PAUL ZIMMERMANN

The running-time of sieving depends on the smoothness of the polynomial values
|F (a, b)| and |G(a, b)|. Let Ψ(z, z1/u) be the number of z1/u-smooth integers below
z for some u > 0. The Dickman-de Bruijn function ρ(u) [7] is often used to estimate
the density of smooth numbers Ψ(z, z1/u). It can be shown that

lim
z→∞

Ψ(z, z1/u)

z
= ρ(u).

The Dickman-de Bruijn function satisfies the differential-difference equation

uρ′(u) + ρ(u− 1) = 0, ρ(u) = 1 for 0 ≤ u ≤ 1.

It may be shown that ρ satisfies the asymptotic estimate

log(ρ(u)) = −(1 + o(1))u log u as u → ∞.

For practical purposes, the frequency of smooth numbers can be approximated by
the Canfield-Erdős-Pomerance theorem, which can be stated as follows (Corollary
1.3 from [8]):

Theorem 2.1. For any fixed ǫ > 0, we have

Ψ(z, z1/u) = zu−u(1+o(1))

as z1/u and u tend to infinity, uniformly in the region z ≥ uu/(1−ǫ).

We want to choose polynomials that produce many smooth polynomial values
across the sieve region. This heuristically requires that the size of polynomial values
is small in general. In addition, one can choose an algebraic polynomial f(x) which
has many roots modulo small prime powers. Then the polynomial values are likely
to be divisible by small prime powers. This may increase the smoothness probability
of polynomial values. In the rest of this section, we recall some methods [9, 13] to
estimate and compare the quality of polynomials.

2.1. Quality of polynomials. The quality of the chosen polynomials in polyno-
mial selection can be modelled in terms of size and root properties [13].

2.1.1. Size property. Let (a, b) be pairs of relatively prime integers in the sieving
region Ω. Since G is a linear polynomial, we may assume that log(|G(a, b)|) does
not vary much across the sieving region. We thus only consider the size of the
nonlinear polynomial F , which is modelled by the circular logarithmic L2-norm
(the smaller the better):

(2.1)
1

2
log

(

s−d

∫ 2π

0

∫ 1

0

F 2(s cos θ, sin θ) r2d+1 dr dθ

)

.

For the norm defined in Equation (2.1), one should not only be able to estimate
accurately that norm for a given skewness s, but find the optimal skewness that
gives the minimal norm.

For a sextic polynomial, the logarithmic L2-norm in Equation (2.1) can be ex-
pressed as follows, where c̃i = cis

i−d/2:

1

2
log

( π

7168

(

231 c̃20 + 42 c̃0c̃2 + 14 c̃0c̃4 + 10 c̃0c̃6 + 21 c̃21 + 14 c̃1c̃3

+ 10 c̃1c̃5 + 7 c̃22 + 10 c̃2c̃4 + 14 c̃2c̃6 + 5 c̃23 + 14 c̃3c̃5(2.2)

+ 7 c̃24 + 42 c̃4c̃6 + 21 c̃25 + 231 c̃26
)

)

.
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For a degree-d polynomial f(x), locating the extrema with respect to s of the term
inside the logarithm simply reduces to finding the roots of a degree-d polynomial,
and keeping the root giving the smallest norm. We often say “the skewness of f”
for this optimal skewness s.

2.1.2. Root property. If a polynomial f(x) has many roots modulo small prime
powers, the polynomial values may behave more smooth than random integers of
about the same size. Boender, Brent, Montgomery and Murphy [5, 12, 13, 14]
described some quantitative measures of this effect (root property). Let npk be the

number of roots of f (mod pk) for k ≥ 1. The expected p-valuation νp(f) is defined
to be νp(f) =

∑

∞

k=1 npk/(pk−1 (p+ 1)). The root property can be quantified by

α(F ) =
∑

p≤B

p prime

(

1

p− 1
− νp(F )

)

log p,

which compares the cumulative expected p-valuation of polynomial values to ran-
dom integers of similar size. We refer to [2, 4, 13] for more details.

2.1.3. Combined score. The logarithmic L2-norm in Equation (2.1) can be modi-
fied to take the root property into account. Assuming the polynomial value F (x, y)
behaves — for the smoothness — like a random integer around F (x, y) eα(F ), the
combined score is defined by adding α(F ) to the logarithmic L2-norm. The com-
bined score is only a rough estimate to compare polynomials. In practice, it is only
trustful when the differences between polynomials are large.

2.1.4. Murphy’s E score. Murphy’s E score [13] is a (relatively) reliable ranking
function to identify the best polynomials without test sieving. Taking the root
property into account, the number of sieving reports (coprime pairs that lead to
smooth polynomial values) can be approximated by

(2.3)
6

π2

∫

Ω

ρ

(

log|F (x, y)|+ α(F )

logB1

)

ρ

(

log|G(x, y)|+ α(G)

logB2

)

dx dy.

For comparison, one can ignore the constant multiplier 6/π2. To approximate
the integral, Murphy used a summation over a set of K sample points (xi, yi):

E(F,G) =

K
∑

i=1

ρ

(

log|F (xi, yi)|+ α(F )

logB1

)

ρ

(

log|G(xi, yi)|+ α(G)

logB2

)

.

Over a circular region of radius r, we can sample xi = r cos θi and yi = r cos θi.
The angles θi sample the points on (the boundary of) the circular region. The
Dickman-de Bruijn function ρ(x) does not admit a closed form solution. An as-
ymptotic expansion can be used to approximate its values. Murphy’s E score is a
better ranking function and we use it in §3.5 to compare polynomials.

2.2. Optimizing the quality of polynomials. Polynomial selection can be di-
vided into three steps: polynomial generation, size optimization and root optimiza-
tion. In polynomial generation, we generate many raw polynomials whose size is
admissible. We further reduce the size of the raw polynomials in size optimization.
Many polynomials can have comparable size after size optimization. We produce
and choose the best polynomials in terms of root properties in root optimization.
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Translation and rotation are useful to optimize the size and root properties. Let

f(x) =
∑d

i=0 cix
i and g(x) = m2x − m1 where m1/m2 (mod n) is the common

root.
Translation of f(x) by k gives a new polynomial f(x+ k); the linear polynomial

becomes g(x) + km2, and the common root is changed to m1/m2 − k (mod n).
Translation does not alter the root properties.

Rotation by a polynomial λ(x) gives a new polynomial f(x) + λ(x) g(x); the
linear polynomial and the common root are unchanged. λ(x) is often a linear or
quadratic polynomial, depending on n and on the skewness of f(x). Rotation can
affect both size and root properties.

The contributions of this paper are threefold: (i) we introduce a new kind of
polynomials for GNFS; (ii) we propose an algorithm which generates such polyno-
mials, assuming a good translation k is known; and (iii) we propose an algorithm
to find such a good translation.

3. Size optimization

Polynomial generation (e.g., using Kleinjung’s methods [9, 10]) gives many raw
polynomials with small leading coefficients. The raw polynomials have very small
|cd|, |cd−1| and small |cd−2|. The coefficients |cd−3|, · · · , |c0| are comparable to
m1 ≈ (n/cd)

1/d. In size optimization, we want to produce polynomials with smaller
logarithmic L2-norm (e.g., Equation (2.1)) by changing the skewness, translating
and rotating.

Assuming no cancellation occurs, we can approximate |F (a, b)| ≈ ∑d
i=0 |ciaibd−i|;

this approximation is maximal at the corner of the sieve region a = U
√
s, b = U/

√
s,

where |F (a, b)| ≈ Ud
∑d

i=0 |cisi−d/2|. For quintic polynomials, |c5|, |c4| and |c3| are
small when using Kleinjung’s algorithm. The next non-controlled coefficient is c2.
As s ≥ 1, the dominant term is |c2|s−1/2U5, so the contribution of c2 on the poly-
nomial value is already reduced by a factor of s−1/2.

For sextic polynomials, the approximate polynomial values are dominated by the
term |c3|U6 in the regions where no cancellation occurs. Here, c3 is not controlled
in the polynomial generation step, and we do not get a reduction in size like the
s−1/2 factor for quintic polynomials. Therefore, it is important to size-optimize
sextic polynomials before trying to optimize the root properties.

Sextic polynomials are of main interest since they have been used in record fac-
torizations such as RSA-768 [18] and should be used for future records. Murphy [13]
shows that the running time of the number field sieve, to factor an integer n with
a degree-d polynomial, is about

exp

(

(1 + o(1))

(

d log d+
√

(d log d)2 + 4 log(n1/(d+1)) log log(n1/(d+1))

))

.

With numerical calculations for various n and d, this would indicate that sextic
polynomials are preferable for numbers between 220 and 360 decimal digits. The
two challenge numbers RSA-896 (270 digits) and RSA-1024 (309 digits) are thus
suitable for using sextic polynomials.

Let f(x) be a sextic polynomial. We can use quadratic rotations since c3, . . . , c0
have order (n/c6)

1/6. A quadratic rotation is defined for integers u, v, w by:

(3.1) fu,v,w(x) = f(x) + (ux2 + vx+ w) g(x).
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3.1. Some “classical” methods. We describe here some of the state-of-the art
size-optimization ideas, some of which are not due to the authors of this article,
but since they are not published elsewhere, we mention them for completeness.

We want to produce a polynomial with small L2-norm by translation and rota-
tion. We focus on degree 6 here for sake of clarity, it is straightforward to generalize
to other degrees.

In the raw polynomial, c0, c1, c2, c3 have similar size and are much larger than
c4, c5, c6. In Equation (2.2), c̃0, c̃1, c̃2 are bounded by c̃3. Therefore, the L2-norm
can be controlled by terms involving c̃3, c̃4, c̃6 (since |c6| ≈ |c5| ≪ |c4|). Assuming
no cancellation occurs in Eq. (2.2), a lower bound, not depending on skewness, is
the term c̃23 = c23. Hence, a small c3 is a necessary condition for a small L2-norm.
The idea is to minimize c3 by translation. Translation by k gives a polynomial in
x whose coefficients are functions of k:

f(x+ k) = c6x
6 + (6c6k + c5)x

5 + (15c6k
2 + 5c5k + c4)x

4

+ (20c6k
3 + 10c5k

2 + 4c4k + c3)x
3 + · · ·

Let ci(k) be the coefficients of the i-th term in the translated polynomial. c3(k) of
f(x+ k) is a cubic polynomial in k. The coefficients c0(k), c1(k), c2(k) will increase
due to translation. We can use rotation to reduce them, if needed.

3.1.1. Minimizing c3(k). The cubic polynomial c3(k) has either one or three real
roots. (This is not particular to degree 6: the coefficient cd−3(k) is always cubic in
k.) For each real root r, we choose k0 to be either ⌈r⌉ or ⌊r⌋, whichever minimizes
|c3(k)|. We translate f(x) by k0. Then we can further optimize the polynomial by
a local descent method.

We give an example with the raw polynomial of A768 from §4.1. The coefficient
of x3 in f(x+ k) is

1810534320k3 + 2410120740k2 − 1189404920661858930542720k

+ 7294790451575028477050464058865868764.

This cubic polynomial has a real root near k0 = −1591376391. We translate f(x)
by k0, which reduces the coefficient c3 from 7.3 · 1036 to −1.4 · 1027. After reducing
the coefficients of degree 2, 1, 0 of f(x + k0) by rotation, we obtain a logarithmic
L2-norm of 77.36, compared to 81.82 for f(x). We then apply a local optimization
method.

This method works better on average than a local optimization used alone. Ta-
ble 1 (see also Figure 1) shows that on our RSA-768 data set of 105 polynomials, it
reduces the average logarithmic L2-norm to 70.34 (with standard deviation 0.60).

3.2. A new class of GNFS polynomials. Previous polynomial selection algo-
rithms that generate a nonlinear polynomial f(x) and a linear one g(x) all produced
polynomials such that Res(f, g) = ±n where n is the number to factor.

We propose a more general class, such that Res(f, g) = ℓn, where ℓ is a small
integer, which we call the “multiplier”, as in MPQS polynomial selection [19].

3.3. An algorithm to find such polynomials. For sake of simplicity we describe
the algorithm for a degree-6 polynomial, but it applies to any degree d-polynomial,
as long as d ≥ 3. Given a raw degree-6 polynomial f = c6x

6 + · · · + c1x+ c0, and
a linear polynomial g = m2x−m1 — for example found by Kleinjung’s algorithm
[9, 10] —, we want to find a polynomial of small L2-norm, as defined in Eq. (2.1),
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by using either translation or rotation. Choose a positive integer s (corresponding
to the skewness of f) and form the following lattice from the coefficients of f (each
column representing a vector):

L =





















s6c6 0 0 0 0
s5c5 0 0 0 0
s4c4 s4m2 0 0 0
s3c3 −s3m1 s3m2 0 0
s2c2 0 −s2m1 s2m2 0
sc1 0 0 −sm1 sm2

c0 0 0 0 −m1





















.

Then reduce this lattice with the Lenstra-Lenstra-Lovász algorithm (LLL), one
obtains short vectors of the form:





















s6(ℓc6)
s5(ℓc5)

s4(ℓc4 + tm2)
s3(ℓc3 − tm1 + um2)
s2(ℓc2 − um1 + vm2)
s(ℓc1 − vm1 + wm2)

ℓc0 − wm1





















which correspond to ℓf(x) + (tx3 + ux2 + vx+w)g(x), after dividing (exactly) the
coefficients by s6, s5, ... Then one applies some local optimization procedure. If one
wants the first vector of L to be not much larger than the last one in norm, one
will take s ≤ (m1/c6)

1/6.
In practice the polynomial ℓf(x) + (tx3 + ux2 + vx + w)g(x) corresponding to

the shortest vector is the same for a large range of skewness s; it thus suffices to
consider a few values of s, say s = 103, 104, 105, 106 for example.

This LLL-based algorithm finds a good rotation ℓf(x)+(· · ·+ux2+vx+w)g(x);
to find a good translation we apply this algorithm on f(x+ k), g(x+ k) for several
values of k, and keep the overall best polynomials (in §3.4, we describe how to find
good values of the translation k).

Previous work has focused on ℓ = 1 only; here we allow a multiplier ℓ > 1.
If Res(f, g) = ±n where n is the number to factor, then with a multiplier we get
Res(ℓf+· · · , g) = ±ℓn, thus the resultant is increased by a factor ℓ, but nonetheless
we might find better polynomials (as demonstrated experimentally below).

It should be noted that one does not try to reduce the coefficient c5, since with
Kleinjung’s algorithm, it is of the same order of magnitude as c6.

This method works better on average than the previous methods. Table 1 shows
that it reduces the average logarithmic L2-norm to 68.42 (with standard devia-
tion 0.72) on our RSA-768 data set of 105 polynomials.

3.4. Finding a good translation. In this section we describe two methods to
generate translations that can be used as input for the algorithm described in
Section 3.3.

3.4.1. Minimizing cd−2(k) and cd−3(k) simultaneously. This method is derived from
the one described in §3.1.1.

After translation and the algorithm described in §3.3, if only the rotation of
highest degree is considered, the new polynomial will look like ℓf(x+k)+txd−3g(x+
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k), where ℓ and t are integers. Let q = t/ℓ, the problem reduces to find rational
values of q for which there exists values of k that make ĉd−2(k) and ĉd−3(k) small in

f̂ = f(x+k)+qxd−3g(x+k) =:
∑d

i=0 ĉi(k)x
i. As we want to minimize ĉd−2(k) and

ĉd−3(k) simultaneously, we try to find values of q for which Resk(ĉd−3(k), ĉd−2(k))
has a root or is small (in absolute value).

For degree 6, ĉd−2(k) and ĉd−3(k) have the following form, with g = m2x−m1:

ĉ4(k) = 15c6k
2 + 5c5k + c4 + qm2,

ĉ3(k) = 20c6k
3 + 10c5k

2 + 4c4k + qm2k + c3 − qm1.

The formula of Res(ĉ3(k), ĉ4(k)) shows that it is a polynomial of degree 3 in q, with
integer coefficients. So it has either 1 or 3 real roots.

In the case where the resultant has 3 real roots, each root can be approximated
with a rational number, using continued fractions, Farey approximations or trying
all rational fractions with bounded denominator. For each of these rational approx-
imations, roots of ĉ4(k) and ĉ3(k) can be computed (they are close, by choice of q),
and can be rounded to obtain values for the translation k.

In the case where the resultant has 1 real root, experiments show that it is
necessary to consider also extrema of the resultant and not only the root. Then,
as in the other case, rational approximations of these values of q are used to find
values of k.

In both cases, the values of k found provide pairs of translated polynomials
(f(x+ k), g(x+ k)) that can be used as input for the algorithm described in §3.3.

3.4.2. Translations of the form i×10j . In addition to the above direct method, one
can try values of k of the form i · 10j for small i, j. In practice, this helps to locate
a few good values of k which are missed by the above direct algorithm.

3.5. Experiments. We examine a data set consisting of 105 raw sextic polynomials
for RSA-768. Those polynomials were generated by CADO-NFS [1] and Msieve [16,
15] using Kleinjung’s algorithm [10]. Table 1 (left) shows the average logarithmic
L2-norm for the raw and optimized polynomials. Figure 1 shows the normalized
discrete density distribution of logarithmic L2-norm for the raw and optimized
polynomials.

Table 1. Comparison of size optimization methods on 105 raw polynomials
for RSA-768 (left) and 5795 raw polynomials for RSA-512 (right). Columns
log(L2) and std. log(L2) record the average logarithmic L2-norm of polynomi-

als and its standard deviation.

RSA-768 log(L2) std. log(L2)

Raw polynomials 80.75 1.00

Method of §3.1.1 70.34 0.60

Method of §3.3 68.42 0.72

RSA-512 log(L2) std. log(L2)

Raw polynomials 53.54 1.96

CADO-NFS 2.1 50.43 1.49

Method of §3.3 49.36 0.62

We performed a similar experiment with degree-5 raw polynomials produced by
CADO-NFS for RSA-512 (see Table 1, right). Although the gain on the average
logarithmic L2-norm is smaller than for degree 6, it demonstrates the new algorithm
is still valuable for degree 5.

In Table 2, we further consider some experiments to compare the final polyno-
mials (after size and root optimization) obtained by the new methods (c.f. §3.3)
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Figure 1. Distribution of logarithmic L2-norm after size optimization.

and the local optimization method. For the RSA-768 data, we optimize the size
of the raw polynomials in both ways and then run the root optimization on the
size-optimized polynomials. Assuming that Murphy’s E score provides an accurate
estimation of the yield rate, we can see that the new method produces polynomials
with much higher yield rates on average.

Table 2. Comparison of two size optimization methods on 105 raw polyno-
mials for RSA-768. Columns log(L2) and α(F ) record the average logarithmic

L2-norm and α-score of polynomials after size and root optimization; Columns
C and E are the average combined score (c.f. §2.1.3) and Murphy’s E score
(c.f. §2.1.4) for polynomials after size and root optimization; Columns Top C

and Top E are the average combined score and Murphy’s E score for the top
100 polynomials respectively. Here we use B1 = 1.1 × 109, B2 = 2.0 × 108

and the area 2.362 × 1018 for the domain Ω in the computation of Murphy’s
E score.

log(L2) α(F ) C Top C E Top E

Local optimization 80.65 -7.777 72.87 64.23 3.37e-14 1.53e-13

Method of §3.3 69.90 -6.812 63.08 59.05 1.10e-13 2.53e-13

4. Polynomials for RSA challenge numbers

4.1. RSA-768. Using our algorithm on a data-set kindly provided by Jason Pa-
padopoulos, we found several polynomials for RSA-768 that are better than the
one used for its factorization, see Table 3.
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Table 3. Better polynomials for RSA-768.

Polynomial A768: log(L2) = 65.40, E = 4.42e-13.

m2 3653258925429788683931

m1 15447766910976513671275672403785068626

c6 3258961776
c5 288664131841057800

c4 11030506237737074466307

c3 -893188977600857037294644587163

c2 94391058239630467884134336648314151

c1 377093715995883343269663077625960978403307
c0 9045161689950071726629005834738832965305854530

Raw polynomial of A768: log(L2) = 81.82.

m2 3653258925429788683931

m1 15447766964908044471905887663199854537

c6 90526716
c5 241012074

c4 -297351230165464732635680
c3 7294790451575028477050464058865868764

c2 2834529958404715620819873213762675365
c1 2885249650190088598028888005645211453

c0 6518955908807555569064205871887548883

Polynomial B768: log(L2) = 63.39, E = 4.52e-13.

m2 5924452599136152496277

m1 30571132577927123601048744672398340686
c6 22604400

c5 33946122310442580
c4 74850428174211171973801

c3 -253187194308237186134406064742
c2 -81310927091457333751052543066797504
c1 287725415794347943853989965924714064839458

c0 -8118770924468304419104941835765577203531011465

Raw polynomial of B768: log(L2) = 82.44.

m2 5924452599136152496277

m1 30571134060766694419190738395978436148
c6 1506960

c5 -2418388
c4 -1408315672283641690514244

c3 -14265589093765299499016567124341772705
c2 -9781453412190401648933585496938223891

c1 6869814166916783294989812412963427466

c0 11656834361594150492420981192388245365

The polynomials A768 and B768 correspond to a multiplier ℓ = 36 and 15 from
their respective raw polynomials, thus could not have been found with previously
known methods. The original polynomial used for the RSA-768 factorization has
logarithmic-L2 norm 64.08 and Murphy E score 4.28e-13. Both polynomials A768

and B768 have better Murphy E score.
A sieving test in the special-q range of length 105 starting at 3, 400, 000, 000

shows that the polynomial A768 produces 7% more relations per special-q than the
original RSA-768 polynomial, and 5% more relations per second. For this test, we
use the same binary than the one used for the factorization of RSA-768, with same
parameters. A similar sieving test shows that B768 produces 5% more relations per
special-q than the original polynomial, and 3% more relations per second.
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4.2. RSA-896. We consider a set of ten raw polynomials for RSA-896, which are
deduced from c6,m2,m1 using the algorithm in [9, Lemma 2.1]:

# c6 m2 m1

1 120 30598679948073727114694567 388409740367611516819003632552473419494959325

2 120 39584252255977153653238969 388409740360914711183938301673437684112903927

3 180 24122614381393211892378929 363029208883450375335947639930852651396354800

4 240 127202957198327749843027 346033739807607082689932107732897888329286672
5 300 2057011251362034806314333 333400907514700794381936235452414684814163915

6 480 5403413584512371865850751 308281015227934361150655851241246900982158569

7 540 2017884993246970143225589 302288315235567244040480840949178516307608795

8 600 55808326686191457067 297026441131666391478870494345190939502152703

9 600 52318705091858802318954527 297026441133748328236580421265680417019345427
10 600 103526916061308104548087973 297026441135225710921799260036162267293068705

We give for each one the logarithmic L2-norm of the raw polynomial, the best
size-optimized polynomial found with CADO-NFS 2.1, and with our new algorithm:

# 1 2 3 4 5 6 7 8 9 10

raw lognorm 98.28 98.11 96.89 98.00 97.84 98.53 97.18 98.37 96.97 96.63

CADO-NFS 2.1 82.88 82.74 82.30 82.03 82.37 83.33 82.12 79.36 83.79 82.45

new algorithm 80.53 80.16 79.33 79.75 79.78 79.83 80.04 80.72 79.92 79.38

The new algorithm yields a logarithmic L2-norm which is smaller by 2.40 on average
(79.94 against 82.34), and always smaller, with the exception of #8.

4.3. RSA-1024. Let us consider the degree-6 polynomial for RSA-1024 from [20,
Appendix A]. This polynomial has logarithmic L2-norm 100.02 according to Eq. (2.1).
We ran our algorithm to re-optimize this polynomial, and obtained the polynomial
A1024 of logarithmic L2-norm 94.91: Therefore we can expect polynomial values
F (a, b) to be smaller by a factor about exp(100.02− 94.91) ≈ 166.

Moreover, using our implementation in CADO-NFS, we found the polynomial
B1024. According to its Murphy E score of 7.26e-12, against 9.75e-13 for the poly-
nomial from [20], we can expect a relation yield about 7.4 times larger. With same
parameters (B1 = B2 = 1011, area 1018), we get a Murphy E score of 3.56e-09 for
the polynomial used to factor RSA-768, which would give a sieving time for RSA-
1024 about 490 times larger than for RSA-768 (instead of 1000 times as claimed in
[18]). Note this polynomial was found in a few cpu hours only, we expect a much
better polynomial with a real search of a few thousands cpu years. This polynomial
is also better than the one from [21], which has Murphy E score 6.79e-12.

5. Conclusion

We introduced a new class of polynomials for GNFS, proposed new algorithms
that produce such polynomials of small size, and demonstrated the efficiency of
those algorithms on RSA challenge numbers. Those algorithms are implemented in
CADO-NFS [1], an open-source implementation of the number field sieve.
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