Pitavastatin

Identification

Summary

Pitavastatin is an HMG-CoA reductase inhibitor used to lower lipid levels and reduce the risk of cardiovascular disease including myocardial infarction and stroke.

Brand Names
Livalo, Nikita, Zypitamag
Generic Name
Pitavastatin
DrugBank Accession Number
DB08860
Background

Pitavastatin, also known as the brand name product Livalo, is a lipid-lowering drug belonging to the statin class of medications. By inhibiting the endogenous production of cholesterol within the liver, statins lower abnormal cholesterol and lipid levels and ultimately reduce the risk of cardiovascular disease. More specifically, statin medications competitively inhibit the enzyme hydroxymethylglutaryl-coenzyme A (HMG-CoA) Reductase,3 which catalyzes the conversion of HMG-CoA to mevalonic acid. This is the third step in a sequence of metabolic reactions involved in the production of several compounds involved in lipid metabolism and transport including cholesterol, low-density lipoprotein (LDL) (sometimes referred to as "bad cholesterol"), and very low-density lipoprotein (VLDL). Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD, such as those with Type 2 Diabetes. The clear evidence of the benefit of statin use coupled with very minimal side effects or long term effects has resulted in this class becoming one of the most widely prescribed medications in North America.4,5

Pitavastatin and other drugs from the statin class of medications including atorvastatin, pravastatin, rosuvastatin, fluvastatin, and lovastatin are considered first-line options for the treatment of dyslipidemia.4,5 Increasing use of the statin class of drugs is largely due to the fact that cardiovascular disease (CVD), which includes heart attack, atherosclerosis, angina, peripheral artery disease, and stroke, has become a leading cause of death in high-income countries and a major cause of morbidity around the world.6 Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD.4,29 Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality.8,9,10,11,12,13 Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack.4,5 Evidence has shown that even for low-risk individuals (with <10% risk of a major vascular event occurring within 5 years) statins cause a 20%-22% relative reduction in major cardiovascular events (heart attack, stroke, coronary revascularization, and coronary death) for every 1 mmol/L reduction in LDL without any significant side effects or risks.15,14

While all statin medications are considered equally effective from a clinical standpoint, rosuvastatin is considered the most potent; doses of 10 to 40mg rosuvastatin per day were found in clinical studies to result in a 45.8% to 54.6% decrease in LDL cholesterol levels.16,17,13,18 Study data has confirmed that pitavastatin's potency in lowering LDL-C is comparable to that of other statins but also has increased efficacy in increasing HDL-C (also known as "good cholesterol").21,22,23 Despite these differences in potency, several trials have demonstrated only minimal differences in terms of clinical outcomes between statins.13,11

Type
Small Molecule
Groups
Approved
Structure
Weight
Average: 421.4608
Monoisotopic: 421.168936466
Chemical Formula
C25H24FNO4
Synonyms
  • Pitavastatia
  • Pitavastatin
  • Pitavastatina
  • Pitavastatine
  • Pitavastatinum
External IDs
  • NK 104
  • NK-104
  • NKS-104
  • NKS104

Pharmacology

Indication

Pitavastatin is indicated for the treatment of adult patients with primary hyperlipidemia or mixed dyslipidemia to reduce elevated total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (Apo B), triglycerides (TG), and to increase high-density lipoprotein cholesterol (HDL-C). It is also indicated for the treatment of pediatric patients aged 8 years and older with heterozygous familial hypercholesterolemia (HeFH) to reduce elevated TC, LDL-C, and Apo B.32

Prescribing of statin medications is considered standard practice following any cardiovascular events and for people with a moderate to high risk of development of CVD. Statin-indicated conditions include diabetes mellitus, clinical atherosclerosis (including myocardial infarction, acute coronary syndromes, stable angina, documented coronary artery disease, stroke, trans ischemic attack (TIA), documented carotid disease, peripheral artery disease, and claudication), abdominal aortic aneurysm, chronic kidney disease, and severely elevated LDL-C levels.4,5

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Adjunct therapy in management ofApolipoprotein b increased•••••••••••••••••••••••••••
Adjunct therapy in management ofApolipoprotein b increased•••••••••••••••••••••••
Adjunct therapy in management ofApolipoprotein b increased•••••••••••••••••••••••
Adjunct therapy in management ofElevation of serum triglyceride levels•••••••••••••••••••••••
Adjunct therapy in management ofElevation of serum triglyceride levels•••••••••••••••••••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Pitavastatin is an oral antilipemic agent which inhibits HMG-CoA reductase. It is used to lower total cholesterol, low density lipoprotein-cholesterol (LDL-C), apolipoprotein B (apoB), non-high density lipoprotein-cholesterol (non-HDL-C), and trigleride (TG) plasma concentrations while increasing HDL-C concentrations. High LDL-C, low HDL-C and high TG concentrations in the plasma are associated with increased risk of atherosclerosis and cardiovascular disease. The total cholesterol to HDL-C ratio is a strong predictor of coronary artery disease and high ratios are associated with higher risk of disease. Increased levels of HDL-C are associated with lower cardiovascular risk. By decreasing LDL-C and TG and increasing HDL-C, rosuvastatin reduces the risk of cardiovascular morbidity and mortality.4,5

Elevated cholesterol levels, and in particular, elevated low-density lipoprotein (LDL) levels, are an important risk factor for the development of CVD.4 Use of statins to target and reduce LDL levels has been shown in a number of landmark studies to significantly reduce the risk of development of CVD and all-cause mortality.8,9,10,11,12 Statins are considered a cost-effective treatment option for CVD due to their evidence of reducing all-cause mortality including fatal and non-fatal CVD as well as the need for surgical revascularization or angioplasty following a heart attack.4,5 Evidence has shown that even for low-risk individuals (with <10% risk of a major vascular event occurring within 5 years) statins cause a 20%-22% relative reduction in major cardiovascular events (heart attack, stroke, coronary revascularization, and coronary death) for every 1 mmol/L reduction in LDL without any significant side effects or risks.15,14

Skeletal Muscle Effects

Pitavastatin may cause myopathy (muscle pain, tenderness, or weakness with creatine kinase (CK) above ten times the upper limit of normal) and rhabdomyolysis (with or without acute renal failure secondary to myoglobinuria). Rare fatalities have occurred as a result of rhabdomyolysis with statin use, including pitavastatin. Predisposing factors for myopathy include advanced age (≥65 years), female gender, uncontrolled hypothyroidism, and renal impairment. In most cases, muscle symptoms and CK increases resolved when treatment was promptly discontinued. As dosages of pitavastatin greater than 4mg per day were associated with an increased risk of severe myopathy, the product monograph recommends a maximum daily dose of 4mg once daily.32

The risk of myopathy during treatment with pitavstatin may be increased with concurrent administration of interacting drugs such as fenofibrate, niacin, gemfibrozil, and cyclosporine. Cases of myopathy, including rhabdomyolysis, have been reported with HMG-CoA reductase inhibitors coadministered with colchicine, and caution should therefore be exercised when prescribing these two medications together.32

Real-world data from observational studies has suggested that 10-15% of people taking statins may experience muscle aches at some point during treatment.28

Hepatic Dysfunction

Increases in serum transaminases have been reported with pitavastatin. In most cases, the elevations were transient and either resolved or improved on continued therapy or after a brief interruption in therapy. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including pitavastatin.32

Patients who consume substantial quantities of alcohol and/or have a history of liver disease may be at increased risk for hepatic injury.32

Increases in HbA1c and Fasting Serum Glucose Levels

Increases in HbA1c and fasting serum glucose levels have been reported with statins, including pitavastatin. Optimize lifestyle measures, including regular exercise, maintaining a healthy body weight, and making healthy food choices.32

An in vitro study found that atorvastatin, pravastatin, rosuvastatin, and pitavastatin exhibited a dose-dependent cytotoxic effect on human pancreas islet β cells, with reductions in cell viability of 32, 41, 34 and 29%, respectively, versus control. Moreover, insulin secretion rates were decreased by 34, 30, 27 and 19%, respectively, relative to control.24

Mechanism of action

Pitavastatin is a statin medication and a competitive inhibitor of the enzyme HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, which catalyzes the conversion of HMG-CoA to mevalonate, an early rate-limiting step in cholesterol biosynthesis.3 Pitavastatin acts primarily in the liver, where decreased hepatic cholesterol concentrations stimulate the upregulation of hepatic low density lipoprotein (LDL) receptors which increase hepatic uptake of LDL, thereby reducing circulating LDL-C levels.

In vitro and in vivo animal studies also demonstrate that statins exert vasculoprotective effects independent of their lipid-lowering properties, also known as the pleiotropic effects of statins.19 This includes improvement in endothelial function, enhanced stability of atherosclerotic plaques, reduced oxidative stress and inflammation, and inhibition of the thrombogenic response.

Statins have also been found to bind allosterically to β2 integrin function-associated antigen-1 (LFA-1), which plays an important role in leukocyte trafficking and in T cell activation.26

TargetActionsOrganism
A3-hydroxy-3-methylglutaryl-coenzyme A reductase
inhibitor
Humans
UIntegrin alpha-LNot AvailableHumans
Absorption

Pitavastatin peak plasma concentrations are achieved about 1 hour after oral administration. Both Cmax and AUC0-inf increased in an approximately dose-proportional manner for single pitavastatin doses from 1 mg to 24 mg once daily. The absolute bioavailability of pitavastatin oral solution is 51%. The Cmax and AUC of pitavastatin did not differ following evening or morning drug administration. In healthy volunteers receiving 4 mg pitavastatin, the percent change from baseline for LDL-C following evening dosing was slightly greater than that following morning dosing. Pitavastatin was absorbed in the small intestine but very little in the colon.32

Administration of pitavastatin with a high fat meal (50% fat content) decreases pitavastatin Cmax by 43% but does not significantly reduce pitavastatin AUC.32

Compared to other statins, pitavastatin has a relatively high bioavailability, which has been suggested to occur due to enterohepatic reabsorption in the intestine following intestinal absorption.25

Genetic differences in the OATP1B1 (organic-anion-transporting polypeptide 1B1) hepatic transporter encoded by the SCLCO1B1 gene (Solute Carrier Organic Anion Transporter family member 1B1) have been shown to impact pitavastatin pharmacokinetics. Evidence from pharmacogenetic studies of the c.521T>C single nucleotide polymorphism (SNP) in the gene encoding OATP1B1 (SLCO1B1) demonstrated that pitavastatin AUC was increased 3.08-fold for individuals homozygous for 521CC compared to homozygous 521TT individuals.27 Other statin drugs impacted by this polymorphism include simvastatin, pitavastatin, atorvastatin, and rosuvastatin.20 Individuals with the 521CC genotype may be at increased risk of dose-related adverse effects including myopathy and rhabdomyolysis due to increased exposure to the drug.

Volume of distribution

The mean volume of distribution is approximately 148 L.32

Protein binding

Pitavstatin is more than 99% protein bound in human plasma, mainly to albumin and alpha 1-acid glycoprotein.32

Metabolism

The principal route of pitavastatin metabolism is glucuronidation via liver uridine 5'-diphosphate glucuronosyltransferase (UGT) with subsequent formation of pitavastatin lactone. There is only minimal metabolism by the cytochrome P450 system. Pitavastatin is marginally metabolized by CYP2C9 and to a lesser extent by CYP2C8. The major metabolite in human plasma is the lactone, which is formed via an ester-type pitavastatin glucuronide conjugate by UGTs (UGT1A3 and UGT2B7).32,25

Hover over products below to view reaction partners

Route of elimination

A mean of 15% of radioactivity of orally administered, single 32 mg 14C-labeled pitavastatin dose was excreted in urine, whereas a mean of 79% of the dose was excreted in feces within 7 days.L48616]

Half-life

The mean plasma elimination half-life is approximately 12 hours.L48616]

Clearance

Following a single dose, the apparent mean oral clearance of pitavastatin is 43.4 L/h.25

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Pitavastatin decreases synthesis of cholesterol and possibly other biologically active substances derived from cholesterol; therefore, pitavastatin may cause fetal harm when administered to pregnant patients based on the mechanism of action. In addition, treatment of hyperlipidemia is not generally necessary during pregnancy. Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hyperlipidemia for most patients.32

A Medicaid cohort linkage study of 1152 statin-exposed pregnant women compared to 886,996 controls did not find a significant teratogenic effect from maternal use of statins in the first trimester of pregnancy, after adjusting for potential confounders – including maternal age, diabetes mellitus, hypertension, obesity, and alcohol and tobacco use – using propensity score-based methods. The relative risk of congenital malformations between the group with statin use and the group with no statin use in the first trimester was 1.07 (95% confidence interval 0.85 to 1.37) after controlling for confounders, particularly pre-existing diabetes mellitus. There were also no statistically significant increases in any of the organ-specific malformations assessed after accounting for confounders. In the majority of pregnancies, statin treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. Study limitations include reliance on physician coding to define the presence of a malformation, lack of control for certain confounders such as body mass index, use of prescription dispensing as verification for the use of a statin, and lack of information on non-live births.32

No specific treatment for pitavastatin overdose is known. Contact Poison Control (1-800-222-1222) for latest recommendations. Hemodialysis is unlikely to be of benefit due to high protein binding ratio of pitavastatin.32

In a 92-week carcinogenicity study in mice given pitavastatin, at the maximum tolerated dose of 75 mg/kg/day with systemic maximum exposures (AUC) 26 times the clinical maximum exposure at 4 mg daily, there was an absence of drug-related tumors.32

In a 92-week carcinogenicity study in rats given pitavastatin at 1, 5, 25 mg/kg/day by oral gavage there was a significant increase in the incidence of thyroid follicular cell tumors at 25 mg/kg/day, which represents 295 times human systemic exposures based on AUC at the 4 mg daily maximum human dose. In a 26-week transgenic mouse (Tg rasH2) carcinogenicity study where animals were given pitavastatin at 30, 75, and 150 mg/kg/day by oral gavage, no clinically significant tumors were observed.32

Pitavastatin was not mutagenic in the Ames test with Salmonella typhimurium and Escherichia coli with and without metabolic activation, the micronucleus test following a single administration in mice and multiple administrations in rats, the unscheduled DNA synthesis test in rats, and a Comet assay in mice. In the chromosomal aberration test, clastogenicity was observed at the highest doses tested, which also elicited high levels of cytotoxicity.32

Pitavastatin had no adverse effects on male and female rat fertility at oral doses of 10 and 30 mg/kg/day, respectively, at systemic exposures 56- and 354-times clinical exposure at 4 mg daily based on AUC.32

Pitavastatin treatment in rabbits resulted in mortality in males and females given 1 mg/kg/day (30-times clinical systemic exposure at 4 mg daily based on AUC) and higher during a fertility study. Although the cause of death was not determined, rabbits had gross signs of renal toxicity (kidneys whitened) indicative of possible ischemia. Lower doses (15-times human systemic exposure) did not show significant toxicity in adult males and females. However, decreased implantations, increased resorptions, and decreased viability of fetuses were observed.32

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AcenocoumarolThe risk or severity of bleeding can be increased when Pitavastatin is combined with Acenocoumarol.
AcipimoxAcipimox may increase the myopathic rhabdomyolysis activities of Pitavastatin.
Alendronic acidThe risk or severity of myopathy, rhabdomyolysis, and myoglobinuria can be increased when Alendronic acid is combined with Pitavastatin.
AmiodaroneThe metabolism of Pitavastatin can be increased when combined with Amiodarone.
Amphotericin BThe risk or severity of myopathy, rhabdomyolysis, and myoglobinuria can be increased when Amphotericin B is combined with Pitavastatin.
Food Interactions
  • Take with or without food. Food does not affect oral absorption or bioavailability.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Pitavastatin calciumIYD54XEG3W147526-32-7RHGYHLPFVJEAOC-WUVPNHNWSA-L
Pitavastatin magnesiumBDS8LUQ384956116-90-8MPAZKXHCZWDZDY-FFNUKLMVSA-L
Pitavastatin sodium29556RBN9P574705-92-3Not applicable
Product Images
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
LivaloTablet, film coated2 mg/1OralEli Lilly & Co. Ltd.2010-05-152016-01-31US flag
LivaloTablet, film coated1.045 mg/1OralKowa Pharmaceuticals America, Inc.2019-05-16Not applicableUS flag
LivaloTablet, film coated1 mg/1OralEli Lilly & Co. Ltd.2010-05-152016-01-31US flag
LivaloTablet, film coated4.18 mg/1OralKowa Pharmaceuticals America, Inc.2019-05-16Not applicableUS flag
LivaloTablet, film coated4 mg/1OralEli Lilly & Co. Ltd.2010-05-152016-01-31US flag
Generic Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
PitavastatinTablet, film coated2 mg/1OralQuinn Pharmaceuticals, Llc2022-12-25Not applicableUS flag
PitavastatinTablet, film coated1.045 mg/1OralAvKARE2024-01-16Not applicableUS flag
PitavastatinTablet, film coated1.045 mg/1OralTeva Pharmaceuticals, Inc.2023-11-02Not applicableUS flag
PitavastatinTablet, film coated1 mg/1OralAurobindo Pharma Limited2023-11-02Not applicableUS flag
PitavastatinTablet4 mg/1OralUpsher-Smith Laboratories, LLC2023-11-02Not applicableUS flag

Categories

ATC Codes
C10AA08 — Pitavastatin
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as phenylquinolines. These are heterocyclic compounds containing a quinoline moiety substituted with a phenyl group.
Kingdom
Organic compounds
Super Class
Organoheterocyclic compounds
Class
Quinolines and derivatives
Sub Class
Phenylquinolines
Direct Parent
Phenylquinolines
Alternative Parents
Phenylpyridines / Medium-chain hydroxy acids and derivatives / Medium-chain fatty acids / Beta hydroxy acids and derivatives / Fluorobenzenes / Halogenated fatty acids / Heterocyclic fatty acids / Hydroxy fatty acids / Unsaturated fatty acids / Aryl fluorides
show 11 more
Substituents
4-phenylpyridine / Alcohol / Aromatic heteropolycyclic compound / Aryl fluoride / Aryl halide / Azacycle / Benzenoid / Beta-hydroxy acid / Carbonyl group / Carboxylic acid
show 27 more
Molecular Framework
Aromatic heteropolycyclic compounds
External Descriptors
quinolines, statin (synthetic), cyclopropanes, dihydroxy monocarboxylic acid, monofluorobenzenes (CHEBI:32020)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
M5681Q5F9P
CAS number
147511-69-1
InChI Key
VGYFMXBACGZSIL-MCBHFWOFSA-N
InChI
InChI=1S/C25H24FNO4/c26-17-9-7-15(8-10-17)24-20-3-1-2-4-22(20)27-25(16-5-6-16)21(24)12-11-18(28)13-19(29)14-23(30)31/h1-4,7-12,16,18-19,28-29H,5-6,13-14H2,(H,30,31)/b12-11+/t18-,19-/m1/s1
IUPAC Name
(3R,5S,6E)-7-[2-cyclopropyl-4-(4-fluorophenyl)quinolin-3-yl]-3,5-dihydroxyhept-6-enoic acid
SMILES
O[C@H](C[C@H](O)\C=C\C1=C(N=C2C=CC=CC2=C1C1=CC=C(F)C=C1)C1CC1)CC(O)=O

References

Synthesis Reference

Shriprakash Dhar DWIVEDI, Dhimant Jasubhai PATEL, Alpesh Pravinchandra SHAH, "METHOD FOR PREPARATION OF PITAVASTATIN AND ITS PHARMACEUTICAL ACCEPTABLE SALTS THEREOF." U.S. Patent US20120022102, issued January 26, 2012.

US20120022102
General References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Jung JA, Noh YH, Jin S, Kim MJ, Kim YH, Jung JA, Lim HS, Bae KS: Pharmacokinetic interaction between pitavastatin and valsartan: a randomized, open-labeled crossover study in healthy male Korean volunteers. Clin Ther. 2012 Apr;34(4):958-65. doi: 10.1016/j.clinthera.2012.01.026. Epub 2012 Mar 10. [Article]
  3. Moghadasian MH: Clinical pharmacology of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Life Sci. 1999;65(13):1329-37. doi: 10.1016/s0024-3205(99)00199-x. [Article]
  4. Anderson TJ, Gregoire J, Pearson GJ, Barry AR, Couture P, Dawes M, Francis GA, Genest J Jr, Grover S, Gupta M, Hegele RA, Lau DC, Leiter LA, Lonn E, Mancini GB, McPherson R, Ngui D, Poirier P, Sievenpiper JL, Stone JA, Thanassoulis G, Ward R: 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can J Cardiol. 2016 Nov;32(11):1263-1282. doi: 10.1016/j.cjca.2016.07.510. Epub 2016 Jul 25. [Article]
  5. Grundy SM, Stone NJ: 2018 American Heart Association/American College of Cardiology Multisociety Guideline on the Management of Blood Cholesterol: Primary Prevention. JAMA Cardiol. 2019 Apr 10. pii: 2730287. doi: 10.1001/jamacardio.2019.0777. [Article]
  6. Kreatsoulas C, Anand SS: The impact of social determinants on cardiovascular disease. Can J Cardiol. 2010 Aug-Sep;26 Suppl C:8C-13C. doi: 10.1016/s0828-282x(10)71075-8. [Article]
  7. Tardy B, Lecompte T, Boelhen F, Tardy-Poncet B, Elalamy I, Morange P, Gruel Y, Wolf M, Francois D, Racadot E, Camarasa P, Blouch MT, Nguyen F, Doubine S, Dutrillaux F, Alhenc-Gelas M, Martin-Toutain I, Bauters A, Ffrench P, de Maistre E, Grunebaum L, Mouton C, Huisse MG, Gouault-Heilmann M, Lucke V: Predictive factors for thrombosis and major bleeding in an observational study in 181 patients with heparin-induced thrombocytopenia treated with lepirudin. Blood. 2006 Sep 1;108(5):1492-6. Epub 2006 May 11. [Article]
  8. Authors unspecified: Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998 Nov 5;339(19):1349-57. doi: 10.1056/NEJM199811053391902. [Article]
  9. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM: Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004 Apr 8;350(15):1495-504. doi: 10.1056/NEJMoa040583. Epub 2004 Mar 8. [Article]
  10. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ: Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008 Nov 20;359(21):2195-207. doi: 10.1056/NEJMoa0807646. Epub 2008 Nov 9. [Article]
  11. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, Raichlen JS, Uno K, Borgman M, Wolski K, Nissen SE: Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011 Dec 1;365(22):2078-87. doi: 10.1056/NEJMoa1110874. Epub 2011 Nov 15. [Article]
  12. Authors unspecified: MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002 Jul 6;360(9326):7-22. doi: 10.1016/S0140-6736(02)09327-3. [Article]
  13. Authors unspecified: Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) Lancet. 1994 Nov 19;344(8934):1383-9. [Article]
  14. Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K, Ebrahim S: Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013 Jan 31;(1):CD004816. doi: 10.1002/14651858.CD004816.pub5. [Article]
  15. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, Voysey M, Gray A, Collins R, Baigent C: The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012 Aug 11;380(9841):581-90. doi: 10.1016/S0140-6736(12)60367-5. Epub 2012 May 17. [Article]
  16. Adams SP, Sekhon SS, Wright JM: Lipid-lowering efficacy of rosuvastatin. Cochrane Database Syst Rev. 2014 Nov 21;(11):CD010254. doi: 10.1002/14651858.CD010254.pub2. [Article]
  17. Pedersen TR, Faergeman O, Kastelein JJ, Olsson AG, Tikkanen MJ, Holme I, Larsen ML, Bendiksen FS, Lindahl C, Szarek M, Tsai J: High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA. 2005 Nov 16;294(19):2437-45. doi: 10.1001/jama.294.19.2437. [Article]
  18. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, Cain VA, Blasetto JW: Comparison of the efficacy and safety of rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* Trial). Am J Cardiol. 2003 Jul 15;92(2):152-60. [Article]
  19. Liao JK, Laufs U: Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89-118. doi: 10.1146/annurev.pharmtox.45.120403.095748. [Article]
  20. Elsby R, Hilgendorf C, Fenner K: Understanding the critical disposition pathways of statins to assess drug-drug interaction risk during drug development: it's not just about OATP1B1. Clin Pharmacol Ther. 2012 Nov;92(5):584-98. doi: 10.1038/clpt.2012.163. Epub 2012 Oct 10. [Article]
  21. Saku K, Zhang B, Noda K: Randomized head-to-head comparison of pitavastatin, atorvastatin, and rosuvastatin for safety and efficacy (quantity and quality of LDL): the PATROL trial. Circ J. 2011;75(6):1493-505. Epub 2011 Apr 15. [Article]
  22. Teramoto T: The clinical impact of pitavastatin: comparative studies with other statins on LDL-C and HDL-C. Expert Opin Pharmacother. 2012 Apr;13(6):859-65. doi: 10.1517/14656566.2012.660525. Epub 2012 Feb 15. [Article]
  23. Teramoto T, Shimano H, Yokote K, Urashima M: Effects of pitavastatin (LIVALO Tablet) on high density lipoprotein cholesterol (HDL-C) in hypercholesterolemia. J Atheroscler Thromb. 2009 Oct;16(5):654-61. doi: 10.5551/jat.1719. [Article]
  24. Zhao W, Zhao SP: Different effects of statins on induction of diabetes mellitus: an experimental study. Drug Des Devel Ther. 2015 Nov 24;9:6211-23. doi: 10.2147/DDDT.S87979. eCollection 2015. [Article]
  25. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
  26. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001 Jun;7(6):687-92. doi: 10.1038/89058. [Article]
  27. Ieiri I, Suwannakul S, Maeda K, Uchimaru H, Hashimoto K, Kimura M, Fujino H, Hirano M, Kusuhara H, Irie S, Higuchi S, Sugiyama Y: SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2007 Nov;82(5):541-7. doi: 10.1038/sj.clpt.6100190. Epub 2007 Apr 25. [Article]
  28. Harper CR, Jacobson TA: The broad spectrum of statin myopathy: from myalgia to rhabdomyolysis. Curr Opin Lipidol. 2007 Aug;18(4):401-8. doi: 10.1097/MOL.0b013e32825a6773. [Article]
  29. Kannel WB, Castelli WP, Gordon T, McNamara PM: Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med. 1971 Jan;74(1):1-12. doi: 10.7326/0003-4819-74-1-1. [Article]
  30. FDA Approved Drug Products: Livalo (pitavastatin) oral tablets [Link]
  31. FDA Approved Drug Products: Zypitamag (pitavastatin magnesium) oral tablets [Link]
  32. FDA Approved Drug Products: NIKITATM (pitavastatin) tablets, for oral use (November 2023) [Link]
  33. FDA Label - Pitavastatin [File]
Human Metabolome Database
HMDB0041991
KEGG Drug
D01862
KEGG Compound
C13334
PubChem Compound
5282452
PubChem Substance
175427122
ChemSpider
4445604
BindingDB
86707
RxNav
861634
ChEBI
32020
ChEMBL
CHEMBL1201753
ZINC
ZINC000001534965
PharmGKB
PA142650384
PDBe Ligand
PV9
RxList
RxList Drug Page
Drugs.com
Drugs.com Drug Page
Wikipedia
Pitavastatin
PDB Entries
8ecg
MSDS
Download (116 KB)

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
4CompletedNot AvailableHealthy Volunteers (HV)3somestatusstop reasonjust information to hide
4CompletedNot AvailableSevere Renal Impairment1somestatusstop reasonjust information to hide
4CompletedBasic ScienceHealthy Volunteers (HV)1somestatusstop reasonjust information to hide
4CompletedOtherHealthy Volunteers (HV)1somestatusstop reasonjust information to hide
4CompletedPreventionDecreased carbohydrate and glucose tolerance / Diabetes Mellitus1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
FormRouteStrength
Tablet, film coatedOral1 mg/1
Tablet, film coatedOral2 mg/1
Tablet, film coatedOral4 mg/1
Tablet, film coatedOral2 mg
Tablet, film coatedOral4 mg
Tablet, film coatedOral1 MG
Tablet, effervescent
Tablet, film coatedOral1.045 mg/1
Tablet, film coatedOral2.09 mg/1
Tablet, film coatedOral4.18 mg/1
TabletOral1 mg/1
TabletOral2 mg/1
TabletOral4 mg/1
TabletOral2.090 mg
Tablet, film coatedOral
Tablet, coatedOral2 mg
Prices
Not Available
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US6465477No2002-10-152016-12-20US flag
US5753675No1998-05-192015-05-19US flag
US5856336Yes1999-01-052021-06-25US flag
US7022713Yes2006-04-042024-08-19US flag
US5854259No1998-12-292015-12-29US flag
US8557993Yes2013-10-152024-08-02US flag
US8829186No2014-09-092031-01-19US flag

Properties

State
Solid
Experimental Properties
PropertyValueSource
water solubilityVery slightly soluble FDA label
Predicted Properties
PropertyValueSource
Water Solubility0.00394 mg/mLALOGPS
logP3.75ALOGPS
logP2.92Chemaxon
logS-5ALOGPS
pKa (Strongest Acidic)4.13Chemaxon
pKa (Strongest Basic)4.86Chemaxon
Physiological Charge-1Chemaxon
Hydrogen Acceptor Count5Chemaxon
Hydrogen Donor Count3Chemaxon
Polar Surface Area90.65 Ã…2Chemaxon
Rotatable Bond Count8Chemaxon
Refractivity115.74 m3·mol-1Chemaxon
Polarizability43.76 Ã…3Chemaxon
Number of Rings4Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleYesChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9735
Blood Brain Barrier+0.9296
Caco-2 permeable+0.5135
P-glycoprotein substrateSubstrate0.5
P-glycoprotein inhibitor INon-inhibitor0.9015
P-glycoprotein inhibitor IINon-inhibitor0.9672
Renal organic cation transporterNon-inhibitor0.9101
CYP450 2C9 substrateNon-substrate0.7757
CYP450 2D6 substrateNon-substrate0.7668
CYP450 3A4 substrateNon-substrate0.5634
CYP450 1A2 substrateNon-inhibitor0.6867
CYP450 2C9 inhibitorNon-inhibitor0.7168
CYP450 2D6 inhibitorNon-inhibitor0.8695
CYP450 2C19 inhibitorNon-inhibitor0.8563
CYP450 3A4 inhibitorNon-inhibitor0.6855
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.6481
Ames testNon AMES toxic0.837
CarcinogenicityNon-carcinogens0.9038
BiodegradationNot ready biodegradable0.997
Rat acute toxicity3.1821 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.987
hERG inhibition (predictor II)Non-inhibitor0.926
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-0uxr-8149500000-7a528b44f7ab848deb48
MS/MS Spectrum - DI-ESI-qTof , NegativeLC-MS/MSsplash10-0006-0095000000-052cbc222b6600555667
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0fe0-0007900000-2bb63235658aceafb061
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-0a4i-1009100000-e0a8cad23f775b34848c
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0fe0-0009300000-5362f65145869bdf6bb1
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-0bt9-2009000000-c7fb90c2c2217c08693d
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-03dl-0059000000-2f9d7b346af0853e6113
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-03ys-2069000000-ff586f4ac86690ac7b9a
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (â„«2)Source typeSource
[M-H]-216.7849741
predicted
DarkChem Lite v0.1.0
[M-H]-199.21974
predicted
DeepCCS 1.0 (2019)
[M+H]+217.1742741
predicted
DarkChem Lite v0.1.0
[M+H]+201.61531
predicted
DeepCCS 1.0 (2019)
[M+Na]+216.8337741
predicted
DarkChem Lite v0.1.0
[M+Na]+207.52785
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, the rate-limiting step in the synthesis of cholesterol and other isoprenoids, thus plays a critical role in cellular cholesterol homeostasis (PubMed:21357570, PubMed:2991281, PubMed:36745799, PubMed:6995544). HMGCR is the main target of statins, a class of cholesterol-lowering drugs (PubMed:11349148, PubMed:18540668, PubMed:36745799)
Specific Function
Coenzyme a binding
Gene Name
HMGCR
Uniprot ID
P04035
Uniprot Name
3-hydroxy-3-methylglutaryl-coenzyme A reductase
Molecular Weight
97475.155 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
  3. Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
  4. FDA Label - Pitavastatin [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
General Function
Integrin ITGAL/ITGB2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrin ITGAL/ITGB2 is a receptor for F11R (PubMed:11812992, PubMed:15528364). Integrin ITGAL/ITGB2 is a receptor for the secreted form of ubiquitin-like protein ISG15; the interaction is mediated by ITGAL (PubMed:29100055). Involved in a variety of immune phenomena including leukocyte-endothelial cell interaction, cytotoxic T-cell mediated killing, and antibody dependent killing by granulocytes and monocytes. Contributes to natural killer cell cytotoxicity (PubMed:15356110). Involved in leukocyte adhesion and transmigration of leukocytes including T-cells and neutrophils (PubMed:11812992). Required for generation of common lymphoid progenitor cells in bone marrow, indicating a role in lymphopoiesis (By similarity). Integrin ITGAL/ITGB2 in association with ICAM3, contributes to apoptotic neutrophil phagocytosis by macrophages (PubMed:23775590)
Specific Function
Cell adhesion molecule binding
Gene Name
ITGAL
Uniprot ID
P20701
Uniprot Name
Integrin alpha-L
Molecular Weight
128768.495 Da
References
  1. Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U: Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nat Med. 2001 Jun;7(6):687-92. doi: 10.1038/89058. [Article]
  2. Liao JK, Laufs U: Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89-118. doi: 10.1146/annurev.pharmtox.45.120403.095748. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:10702251, PubMed:15470161, PubMed:15472229, PubMed:17442341, PubMed:18674515, PubMed:18719240, PubMed:19022937, PubMed:23288867, PubMed:23756265, PubMed:26220143). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:15470161, PubMed:18674515, PubMed:23756265). Catalyzes the glucuronidation of endogenous steroid hormones such as androgens (epitestosterone, androsterone) and estrogens (estradiol, epiestradiol, estriol, catechol estrogens) (PubMed:15472229, PubMed:17442341, PubMed:18719240, PubMed:19022937, PubMed:2159463, PubMed:23288867, PubMed:26220143). Also regulates the levels of retinoic acid, a major metabolite of vitamin A involved in apoptosis, cellular growth and differentiation, and embryonic development (PubMed:10702251). Contributes to bile acid (BA) detoxification by catalyzing the glucuronidation of BA substrates, which are natural detergents for dietary lipids absorption (PubMed:23756265). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonist losartan, caderastan and zolarsatan, drugs which can inhibit the effect of angiotensin II (PubMed:18674515). Also metabolizes mycophenolate, an immunosuppressive agent (PubMed:15470161)
Specific Function
Glucuronosyltransferase activity
Gene Name
UGT2B7
Uniprot ID
P16662
Uniprot Name
UDP-glucuronosyltransferase 2B7
Molecular Weight
60720.15 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
  3. FDA Label - Pitavastatin [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
UDP-glucuronosyltransferase (UGT) that catalyzes phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase the metabolite's water solubility, thereby facilitating excretion into either the urine or bile (PubMed:15472229, PubMed:18674515, PubMed:18719240, PubMed:23288867, PubMed:23756265, PubMed:24641623). Essential for the elimination and detoxification of drugs, xenobiotics and endogenous compounds (PubMed:23756265). Catalyzes the glucuronidation of endogenous estrogen hormones such as estradiol and estrone (PubMed:15472229, PubMed:18719240, PubMed:23288867). Contributes to bile acid (BA) detoxification by catalyzing the glucuronidation of BA substrates, which are natural detergents for dietary lipids absorption (PubMed:23756265). Involved in the glucuronidation of calcidiol, which is the major circulating form of vitamin D3, essential for the regulation of calcium and phosphate homeostasis (PubMed:24641623). Involved in the glucuronidation of the AGTR1 angiotensin receptor antagonists losartan, candesartan and zolarsartan, which can inhibit the effect of angiotensin II (PubMed:18674515)
Specific Function
Enzyme binding
Gene Name
UGT1A3
Uniprot ID
P35503
Uniprot Name
UDP-glucuronosyltransferase 1A3
Molecular Weight
60337.835 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
  3. FDA Label - Pitavastatin [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and steroids (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:12865317, PubMed:15766564, PubMed:19965576, PubMed:21576599, PubMed:7574697, PubMed:9435160, PubMed:9866708). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:15766564, PubMed:19965576, PubMed:7574697, PubMed:9866708). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Exhibits low catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2 (PubMed:12865317). Catalyzes bisallylic hydroxylation and hydroxylation with double-bond migration of polyunsaturated fatty acids (PUFA) (PubMed:9435160, PubMed:9866708). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol (PubMed:11950794). Contributes to the wide pharmacokinetics variability of the metabolism of drugs such as S-warfarin, diclofenac, phenytoin, tolbutamide and losartan (PubMed:25994031)
Specific Function
(r)-limonene 6-monooxygenase activity
Gene Name
CYP2C9
Uniprot ID
P11712
Uniprot Name
Cytochrome P450 2C9
Molecular Weight
55627.365 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
  3. Pitavastatin FDA Label [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
Specific Function
Arachidonic acid epoxygenase activity
Gene Name
CYP2C8
Uniprot ID
P10632
Uniprot Name
Cytochrome P450 2C8
Molecular Weight
55824.275 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. FDA Label - Pitavastatin [File]

Carriers

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Binds water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (PubMed:19021548). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (By similarity). The shared binding site between zinc and calcium at residue Asp-273 suggests a crosstalk between zinc and calcium transport in the blood (By similarity). The rank order of affinity is zinc > calcium > magnesium (By similarity). Binds to the bacterial siderophore enterobactin and inhibits enterobactin-mediated iron uptake of E.coli from ferric transferrin, and may thereby limit the utilization of iron and growth of enteric bacteria such as E.coli (PubMed:6234017). Does not prevent iron uptake by the bacterial siderophore aerobactin (PubMed:6234017)
Specific Function
Antioxidant activity
Gene Name
ALB
Uniprot ID
P02768
Uniprot Name
Albumin
Molecular Weight
69365.94 Da
References
  1. FDA Label - Pitavastatin [File]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Functions as a transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction
Specific Function
Not Available
Gene Name
ORM1
Uniprot ID
P02763
Uniprot Name
Alpha-1-acid glycoprotein 1
Molecular Weight
23539.43 Da
References
  1. FDA Label - Pitavastatin [File]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
General Function
Mediates the Na(+)-independent uptake of organic anions (PubMed:10358072, PubMed:15159445, PubMed:17412826). Shows broad substrate specificity, can transport both organic anions such as bile acid taurocholate (cholyltaurine) and conjugated steroids (dehydroepiandrosterone 3-sulfate, 17-beta-glucuronosyl estradiol, and estrone 3-sulfate), as well as eicosanoids (prostaglandin E2, thromboxane B2, leukotriene C4, and leukotriene E4), and thyroid hormones (T4/L-thyroxine, and T3/3,3',5'-triiodo-L-thyronine) (PubMed:10358072, PubMed:10601278, PubMed:10873595, PubMed:11159893, PubMed:12196548, PubMed:12568656, PubMed:15159445, PubMed:15970799, PubMed:16627748, PubMed:17412826, PubMed:19129463, PubMed:26979622). Can take up bilirubin glucuronides from plasma into the liver, contributing to the detoxification-enhancing liver-blood shuttling loop (PubMed:22232210). Involved in the clearance of endogenous and exogenous substrates from the liver (PubMed:10358072, PubMed:10601278). Transports coproporphyrin I and III, by-products of heme synthesis, and may be involved in their hepatic disposition (PubMed:26383540). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can transport HMG-CoA reductase inhibitors (also known as statins), such as pravastatin and pitavastatin, a clinically important class of hypolipidemic drugs (PubMed:10601278, PubMed:15159445, PubMed:15970799). May play an important role in plasma and tissue distribution of the structurally diverse chemotherapeutic drug methotrexate (PubMed:23243220). May also transport antihypertension agents, such as the angiotensin-converting enzyme (ACE) inhibitor prodrug enalapril, and the highly selective angiotensin II AT1-receptor antagonist valsartan, in the liver (PubMed:16624871, PubMed:16627748). Shows a pH-sensitive substrate specificity towards prostaglandin E2 and T4 which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:19129463). Hydrogencarbonate/HCO3(-) acts as the probable counteranion that exchanges for organic anions (PubMed:19129463)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO1B1
Uniprot ID
Q9Y6L6
Uniprot Name
Solute carrier organic anion transporter family member 1B1
Molecular Weight
76447.99 Da
References
  1. Hirano M, Maeda K, Shitara Y, Sugiyama Y: Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004 Oct;311(1):139-46. Epub 2004 May 24. [Article]
  2. Karlgren M, Ahlin G, Bergstrom CA, Svensson R, Palm J, Artursson P: In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res. 2012 Feb;29(2):411-26. doi: 10.1007/s11095-011-0564-9. Epub 2011 Aug 23. [Article]
  3. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Mediates the Na(+)-independent uptake of organic anions (PubMed:10779507, PubMed:15159445, PubMed:17412826). Shows broad substrate specificity, can transport both organic anions such as bile acid taurocholate (cholyltaurine) and conjugated steroids (17-beta-glucuronosyl estradiol, dehydroepiandrosterone sulfate (DHEAS), and estrone 3-sulfate), as well as eicosanoid leukotriene C4, prostaglandin E2 and L-thyroxine (T4) (PubMed:10779507, PubMed:11159893, PubMed:12568656, PubMed:15159445, PubMed:17412826, PubMed:19129463). Hydrogencarbonate/HCO3(-) acts as the probable counteranion that exchanges for organic anions (PubMed:19129463). Shows a pH-sensitive substrate specificity towards sulfated steroids, taurocholate and T4 which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:19129463). Involved in the clearance of bile acids and organic anions from the liver (PubMed:22232210). Can take up bilirubin glucuronides from plasma into the liver, contributing to the detoxification-enhancing liver-blood shuttling loop (PubMed:22232210). Transports coproporphyrin I and III, by-products of heme synthesis, and may be involved in their hepatic disposition (PubMed:26383540). May contribute to regulate the transport of organic compounds in testes across the blood-testis-barrier (Probable). Can transport HMG-CoA reductase inhibitors (also known as statins) such as pitavastatin, a clinically important class of hypolipidemic drugs (PubMed:15159445). May play an important role in plasma and tissue distribution of the structurally diverse chemotherapeutic drugs methotrexate and paclitaxel (PubMed:23243220). May also transport antihypertension agents, such as the angiotensin-converting enzyme (ACE) inhibitor prodrug enalapril, and the highly selective angiotensin II AT1-receptor antagonist valsartan, in the liver (PubMed:16624871, PubMed:16627748)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO1B3
Uniprot ID
Q9NPD5
Uniprot Name
Solute carrier organic anion transporter family member 1B3
Molecular Weight
77402.175 Da
References
  1. Hirano M, Maeda K, Shitara Y, Sugiyama Y: Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J Pharmacol Exp Ther. 2004 Oct;311(1):139-46. Epub 2004 May 24. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Mediates the Na(+)-independent transport of steroid sulfate conjugates and other specific organic anions (PubMed:10873595, PubMed:11159893, PubMed:11932330, PubMed:12724351, PubMed:14610227, PubMed:16908597, PubMed:18501590, PubMed:20507927, PubMed:22201122, PubMed:23531488, PubMed:25132355, PubMed:26383540, PubMed:27576593, PubMed:28408210, PubMed:29871943, PubMed:34628357). Responsible for the transport of estrone 3-sulfate (E1S) through the basal membrane of syncytiotrophoblast, highlighting a potential role in the placental absorption of fetal-derived sulfated steroids including the steroid hormone precursor dehydroepiandrosterone sulfate (DHEA-S) (PubMed:11932330, PubMed:12409283). Also facilitates the uptake of sulfated steroids at the basal/sinusoidal membrane of hepatocytes, therefore accounting for the major part of organic anions clearance of liver (PubMed:11159893). Mediates the intestinal uptake of sulfated steroids (PubMed:12724351, PubMed:28408210). Mediates the uptake of the neurosteroids DHEA-S and pregnenolone sulfate (PregS) into the endothelial cells of the blood-brain barrier as the first step to enter the brain (PubMed:16908597, PubMed:25132355). Also plays a role in the reuptake of neuropeptides such as substance P/TAC1 and vasoactive intestinal peptide/VIP released from retinal neurons (PubMed:25132355). May act as a heme transporter that promotes cellular iron availability via heme oxygenase/HMOX2 and independently of TFRC (PubMed:35714613). Also transports heme by-product coproporphyrin III (CPIII), and may be involved in their hepatic disposition (PubMed:26383540). Mediates the uptake of other substrates such as prostaglandins D2 (PGD2), E1 (PGE1) and E2 (PGE2), taurocholate, L-thyroxine, leukotriene C4 and thromboxane B2 (PubMed:10873595, PubMed:14610227, PubMed:19129463, PubMed:29871943, Ref.25). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable). Shows a pH-sensitive substrate specificity which may be ascribed to the protonation state of the binding site and leads to a stimulation of substrate transport in an acidic microenvironment (PubMed:14610227, PubMed:19129463, PubMed:22201122). The exact transport mechanism has not been yet deciphered but most likely involves an anion exchange, coupling the cellular uptake of organic substrate with the efflux of an anionic compound (PubMed:19129463, PubMed:20507927, PubMed:26277985). Hydrogencarbonate/HCO3(-) acts as a probable counteranion that exchanges for organic anions (PubMed:19129463). Cytoplasmic glutamate may also act as counteranion in the placenta (PubMed:26277985). An inwardly directed proton gradient has also been proposed as the driving force of E1S uptake with a (H(+):E1S) stoichiometry of (1:1) (PubMed:20507927)
Specific Function
Bile acid transmembrane transporter activity
Gene Name
SLCO2B1
Uniprot ID
O94956
Uniprot Name
Solute carrier organic anion transporter family member 2B1
Molecular Weight
76697.93 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
As a major transporter of conjugated bile salts from plasma into the hepatocyte, it plays a key role in the enterohepatic circulation of bile salts necessary for the solubilization and absorption of dietary fat and fat-soluble vitamins (PubMed:14660639, PubMed:24867799, PubMed:34060352, PubMed:8132774). It is strictly dependent on the extracellular presence of sodium (PubMed:14660639, PubMed:24867799, PubMed:34060352, PubMed:8132774). It exhibits broad substrate specificity and transports various bile acids, such as taurocholate, cholate, as well as non-bile acid organic compounds, such as estrone sulfate (PubMed:14660639, PubMed:34060352). Works collaboratively with the ileal transporter (NTCP2), the organic solute transporter (OST), and the bile salt export pump (BSEP), to ensure efficacious biological recycling of bile acids during enterohepatic circulation (PubMed:33222321)
Specific Function
Bile acid
Gene Name
SLC10A1
Uniprot ID
Q14973
Uniprot Name
Hepatic sodium/bile acid cotransporter
Molecular Weight
38118.64 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
  2. Hoy SM: Pitavastatin: A Review in Hypercholesterolemia. Am J Cardiovasc Drugs. 2017 Apr;17(2):157-168. doi: 10.1007/s40256-017-0213-8. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Broad substrate specificity ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes a wide variety of physiological compounds, dietary toxins and xenobiotics from cells (PubMed:11306452, PubMed:12958161, PubMed:19506252, PubMed:20705604, PubMed:28554189, PubMed:30405239, PubMed:31003562). Involved in porphyrin homeostasis, mediating the export of protoporphyrin IX (PPIX) from both mitochondria to cytosol and cytosol to extracellular space, it also functions in the cellular export of heme (PubMed:20705604, PubMed:23189181). Also mediates the efflux of sphingosine-1-P from cells (PubMed:20110355). Acts as a urate exporter functioning in both renal and extrarenal urate excretion (PubMed:19506252, PubMed:20368174, PubMed:22132962, PubMed:31003562, PubMed:36749388). In kidney, it also functions as a physiological exporter of the uremic toxin indoxyl sulfate (By similarity). Also involved in the excretion of steroids like estrone 3-sulfate/E1S, 3beta-sulfooxy-androst-5-en-17-one/DHEAS, and other sulfate conjugates (PubMed:12682043, PubMed:28554189, PubMed:30405239). Mediates the secretion of the riboflavin and biotin vitamins into milk (By similarity). Extrudes pheophorbide a, a phototoxic porphyrin catabolite of chlorophyll, reducing its bioavailability (By similarity). Plays an important role in the exclusion of xenobiotics from the brain (Probable). It confers to cells a resistance to multiple drugs and other xenobiotics including mitoxantrone, pheophorbide, camptothecin, methotrexate, azidothymidine, and the anthracyclines daunorubicin and doxorubicin, through the control of their efflux (PubMed:11306452, PubMed:12477054, PubMed:15670731, PubMed:18056989, PubMed:31254042). In placenta, it limits the penetration of drugs from the maternal plasma into the fetus (By similarity). May play a role in early stem cell self-renewal by blocking differentiation (By similarity)
Specific Function
Abc-type xenobiotic transporter activity
Gene Name
ABCG2
Uniprot ID
Q9UNQ0
Uniprot Name
Broad substrate specificity ATP-binding cassette transporter ABCG2
Molecular Weight
72313.47 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
Specific Function
Abc-type xenobiotic transporter activity
Gene Name
ABCB1
Uniprot ID
P08183
Uniprot Name
ATP-dependent translocase ABCB1
Molecular Weight
141477.255 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
ATP-dependent transporter of the ATP-binding cassette (ABC) family that binds and hydrolyzes ATP to enable active transport of various substrates including many drugs, toxicants and endogenous compound across cell membranes. Transports a wide variety of conjugated organic anions such as sulfate-, glucuronide- and glutathione (GSH)-conjugates of endo- and xenobiotics substrates (PubMed:10220572, PubMed:10421658, PubMed:11500505, PubMed:16332456). Mediates hepatobiliary excretion of mono- and bis-glucuronidated bilirubin molecules and therefore play an important role in bilirubin detoxification (PubMed:10421658). Mediates also hepatobiliary excretion of others glucuronide conjugates such as 17beta-estradiol 17-glucosiduronic acid and leukotriene C4 (PubMed:11500505). Transports sulfated bile salt such as taurolithocholate sulfate (PubMed:16332456). Transports various anticancer drugs, such as anthracycline, vinca alkaloid and methotrexate and HIV-drugs such as protease inhibitors (PubMed:10220572, PubMed:11500505, PubMed:12441801). Confers resistance to several anti-cancer drugs including cisplatin, doxorubicin, epirubicin, methotrexate, etoposide and vincristine (PubMed:10220572, PubMed:11500505)
Specific Function
Abc-type glutathione s-conjugate transporter activity
Gene Name
ABCC2
Uniprot ID
Q92887
Uniprot Name
ATP-binding cassette sub-family C member 2
Molecular Weight
174205.64 Da
References
  1. Morgan RE, Campbell SE, Yu CY, Sponseller CA, Muster HA: Comparison of the safety, tolerability, and pharmacokinetic profile of a single oral dose of pitavastatin 4 mg in adult subjects with severe renal impairment not on hemodialysis versus healthy adult subjects. J Cardiovasc Pharmacol. 2012 Jul;60(1):42-8. doi: 10.1097/FJC.0b013e318256cdf0. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
No
Actions
Substrate
General Function
Catalyzes the transport of the major hydrophobic bile salts, such as taurine and glycine-conjugated cholic acid across the canalicular membrane of hepatocytes in an ATP-dependent manner, therefore participates in hepatic bile acid homeostasis and consequently to lipid homeostasis through regulation of biliary lipid secretion in a bile salts dependent manner (PubMed:15791618, PubMed:16332456, PubMed:18985798, PubMed:19228692, PubMed:20010382, PubMed:20398791, PubMed:22262466, PubMed:24711118, PubMed:29507376, PubMed:32203132). Transports taurine-conjugated bile salts more rapidly than glycine-conjugated bile salts (PubMed:16332456). Also transports non-bile acid compounds, such as pravastatin and fexofenadine in an ATP-dependent manner and may be involved in their biliary excretion (PubMed:15901796, PubMed:18245269)
Specific Function
Abc-type bile acid transporter activity
Gene Name
ABCB11
Uniprot ID
O95342
Uniprot Name
Bile salt export pump
Molecular Weight
146405.83 Da
References
  1. Pedersen JM, Matsson P, Bergstrom CA, Hoogstraate J, Noren A, LeCluyse EL, Artursson P: Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci. 2013 Dec;136(2):328-43. doi: 10.1093/toxsci/kft197. Epub 2013 Sep 6. [Article]

Drug created at March 03, 2013 23:50 / Updated at August 02, 2024 07:30