Procainamide

Identification

Summary

Procainamide is a medication used to treat life threatening ventricular arrhythmias.

Generic Name
Procainamide
DrugBank Accession Number
DB01035
Background

A derivative of procaine with less CNS action.

Type
Small Molecule
Groups
Approved
Structure
Weight
Average: 235.3253
Monoisotopic: 235.168462309
Chemical Formula
C13H21N3O
Synonyms
  • p-Amino-N-(2-diethylaminoethyl)benzamide
  • p-Aminobenzoic diethylaminoethylamide
  • Procainamida
  • Procainamide
  • Procaïnamide
  • Procainamidum
External IDs
  • NSC-27461

Pharmacology

Indication

For the treatment of life-threatening ventricular arrhythmias.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Associated Conditions
Indication TypeIndicationCombined Product DetailsApproval LevelAge GroupPatient CharacteristicsDose Form
Management ofSupraventricular arrhythmias••••••••••••
Management ofVentricular tachycardia••• •••••
Management ofLife-threatening ventricular arrhythmias••••••••••••
Management ofPre-excited atrial fibrillation••• ••••••••••
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Procainamide is an agent indicated for production of local or regional anesthesia and in the treatment of ventricular tachycardia occurring during cardiac manipulation, such as surgery or catheterization, or which may occur during acute myocardial infarction, digitalis toxicity, or other cardiac diseases. The mode of action of the antiarrhythmic effect of Procainamide appears to be similar to that of procaine and quinidine. Ventricular excitability is depressed and the stimulation threshold of the ventricle is increased during diastole. The sinoatrial node is, however, unaffected.

Mechanism of action

Procainamide is sodium channel blocker. It stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses thereby effecting local anesthetic action.

TargetActionsOrganism
AVoltage-gated inwardly rectifying potassium channel KCNH2
inhibitor
Humans
ASodium channel protein type 5 subunit alpha
inhibitor
Humans
UDNA (cytosine-5)-methyltransferase 1
other
Humans
Absorption

75 to 95%

Volume of distribution
  • 2 L/kg
Protein binding

15 to 20%

Metabolism

Hepatic

Hover over products below to view reaction partners

Route of elimination

Trace amounts may be excreted in the urine as free and conjugated p-aminobenzoic acid, 30 to 60 percent as unchanged PA, and 6 to 52 percent as the NAPA derivative.

Half-life

~2.5-4.5 hours

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

LD50=95 mg/kg (rat, IV); LD50=312 mg/kg (mouse, oral); LD50=103 mg/kg (mouse, IV); LD50=250 mg/kg (rabbit, IV)

Pathways
PathwayCategory
Procainamide (Antiarrhythmic) Action PathwayDrug action
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbacavirAbacavir may decrease the excretion rate of Procainamide which could result in a higher serum level.
AbataceptThe metabolism of Procainamide can be increased when combined with Abatacept.
AbemaciclibThe excretion of Procainamide can be decreased when combined with Abemaciclib.
AbirateroneThe metabolism of Procainamide can be decreased when combined with Abiraterone.
AcebutololProcainamide may increase the arrhythmogenic activities of Acebutolol.
Food Interactions
  • Avoid alcohol.
  • Take with food. Food reduces irritation.

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Procainamide hydrochlorideSI4064O0LX614-39-1ABTXGJFUQRCPNH-UHFFFAOYSA-N
International/Other Brands
Biocoryl / Procan / Procapan
Brand Name Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
Procainamide Hydrochloride Injection USPSolution100 mg / mLIntramuscular; IntravenousSandoz S.P.A.1995-12-31Not applicableCanada flag
Procainamide-250 Cap 250mgCapsule250 mgOralPro Doc Limitee1987-12-312000-07-31Canada flag
Procainamide-375 Cap 375mgCapsule375 mgOralPro Doc Limitee1987-12-312000-07-31Canada flag
Procainamide-500 Cap 500mgCapsule500 mgOralPro Doc Limitee1987-12-312000-07-31Canada flag
Procan SRTablet, extended release500 mgOralErfa Canada 2012 Inc1985-12-312015-06-05Canada flag
Generic Prescription Products
NameDosageStrengthRouteLabellerMarketing StartMarketing EndRegionImage
Apo-procainamide Cap 250mgCapsule250 mgOralApotex Corporation1986-12-31Not applicableCanada flag
Apo-procainamide Cap 375mgCapsule375 gOralApotex Corporation1986-12-312019-01-16Canada flag
Apo-procainamide Cap 500mgCapsule500 mgOralApotex Corporation1986-12-312019-01-16Canada flag
Procainamide HciInjection, solution100 mg/1mLIntramuscular; IntravenousHF Acquisition Co LLC, DBA HealthFirst2019-02-10Not applicableUS flag
Procainamide HciInjection, solution500 mg/1mLIntramuscular; IntravenousHF Acquisition Co LLC, DBA HealthFirst2019-10-16Not applicableUS flag

Categories

ATC Codes
C01BA02 — Procainamide
Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as aminobenzamides. These are organic compounds containing a benzamide moiety with an amine group attached to the benzene ring.
Kingdom
Organic compounds
Super Class
Benzenoids
Class
Benzene and substituted derivatives
Sub Class
Benzoic acids and derivatives
Direct Parent
Aminobenzamides
Alternative Parents
Benzamides / Benzoyl derivatives / Aniline and substituted anilines / Trialkylamines / Secondary carboxylic acid amides / Amino acids and derivatives / Primary amines / Organopnictogen compounds / Organooxygen compounds / Organic oxides
show 1 more
Substituents
Amine / Amino acid or derivatives / Aminobenzamide / Aniline or substituted anilines / Aromatic homomonocyclic compound / Benzamide / Benzoyl / Carboxamide group / Carboxylic acid derivative / Hydrocarbon derivative
show 10 more
Molecular Framework
Aromatic homomonocyclic compounds
External Descriptors
benzamides (CHEBI:8428)
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
L39WTC366D
CAS number
51-06-9
InChI Key
REQCZEXYDRLIBE-UHFFFAOYSA-N
InChI
InChI=1S/C13H21N3O/c1-3-16(4-2)10-9-15-13(17)11-5-7-12(14)8-6-11/h5-8H,3-4,9-10,14H2,1-2H3,(H,15,17)
IUPAC Name
4-amino-N-[2-(diethylamino)ethyl]benzamide
SMILES
CCN(CC)CCNC(=O)C1=CC=C(N)C=C1

References

Synthesis Reference

Victor Chu, Zhu Teng, Steve Goss, Ronald Edwards, Kelle Garvey, Timothy Gorzynski, William Bedzyk, "Synthesis and application of procainamide analogs for use in an immunoassay." U.S. Patent US20050227288, issued October 13, 2005.

US20050227288
General References
Not Available
Human Metabolome Database
HMDB0015169
KEGG Compound
C07401
PubChem Compound
4913
PubChem Substance
46507313
ChemSpider
4744
BindingDB
39344
RxNav
8700
ChEBI
8428
ChEMBL
CHEMBL640
ZINC
ZINC000001530756
Therapeutic Targets Database
DAP000516
PharmGKB
PA451108
RxList
RxList Drug Page
Drugs.com
Drugs.com Drug Page
Wikipedia
Procainamide
MSDS
Download (72 KB)

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
Not AvailableCompletedDiagnosticAtrial Fibrillation1somestatusstop reasonjust information to hide
Not AvailableUnknown StatusNot AvailableSupraventricular Tachycardia (SVT)1somestatusstop reasonjust information to hide
Not AvailableWithdrawnTreatmentArrhythmia1somestatusstop reasonjust information to hide
4CompletedTreatmentAtrial Fibrillation / Brugada Syndrome (BrS) / Ventricular Tachycardia (VT)1somestatusstop reasonjust information to hide
4RecruitingTreatmentAtrial Fibrillation1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
  • E.R. Squibb and Sons LLC
  • Hospira Inc.
  • Ivax Pharmaceuticals
  • Kaiser Foundation Hospital
  • Major Pharmaceuticals
  • Mckesson Corp.
  • Monarch Pharmacy
  • Murfreesboro Pharmaceutical Nursing Supply
  • Neuman Distributors Inc.
  • PD-Rx Pharmaceuticals Inc.
  • Physicians Total Care Inc.
  • United Research Laboratories Inc.
Dosage Forms
FormRouteStrength
CapsuleOral375 g
Injection, solutionIntravenous
CapsuleOral250 mg/1
CapsuleOral375 mg/1
CapsuleOral500 mg/1
InjectionIntramuscular; Intravenous100 mg/1mL
InjectionIntramuscular; Intravenous1000 mg/1
InjectionIntramuscular; Intravenous500 mg/1mL
Injection, solutionIntramuscular; Intravenous100 mg/1mL
Injection, solutionIntramuscular; Intravenous500 mg/1mL
SolutionIntramuscular; Intravenous100 mg / mL
CapsuleOral
Tablet, extended releaseOral250 mg
Tablet, extended releaseOral500 mg
Tablet, extended releaseOral750 mg
Tablet, film coated, extended releaseOral1000 mg/1
Tablet, film coated, extended releaseOral500 mg/1
Capsule, gelatin coatedOral250 mg/1
Capsule, gelatin coatedOral375 mg/1
Capsule, gelatin coatedOral500 mg/1
Tablet, film coatedOral250 mg/1
Tablet, film coatedOral375 mg/1
Tablet, film coatedOral500 mg/1
CapsuleOral375 mg
CapsuleOral500 mg
LiquidIntramuscular; Intravenous100 mg / mL
CapsuleOral250 mg
Prices
Unit descriptionCostUnit
Procainamide 500 mg/ml vial6.45USD ml
Procainamide 100 mg/ml vial1.29USD ml
Procan Sr 750 mg Sustained-Release Tablet0.91USD tablet
Procan Sr 500 mg Sustained-Release Tablet0.56USD tablet
Procan Sr 250 mg Sustained-Release Tablet0.4USD tablet
DrugBank does not sell nor buy drugs. Pricing information is supplied for informational purposes only.
Patents
Patent NumberPediatric ExtensionApprovedExpires (estimated)Region
US5656296No1997-08-122014-08-12US flag

Properties

State
Solid
Experimental Properties
PropertyValueSource
melting point (°C)165-169 °CNot Available
water solubility5050 mg/LNot Available
logP0.88HANSCH,C ET AL. (1995)
pKa9.32SANGSTER (1994)
Predicted Properties
PropertyValueSource
Water Solubility3.02 mg/mLALOGPS
logP1.42ALOGPS
logP0.95Chemaxon
logS-1.9ALOGPS
pKa (Strongest Acidic)15.75Chemaxon
pKa (Strongest Basic)9.04Chemaxon
Physiological Charge1Chemaxon
Hydrogen Acceptor Count3Chemaxon
Hydrogen Donor Count2Chemaxon
Polar Surface Area58.36 Å2Chemaxon
Rotatable Bond Count6Chemaxon
Refractivity72.25 m3·mol-1Chemaxon
Polarizability27.69 Å3Chemaxon
Number of Rings1Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleNoChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9561
Blood Brain Barrier+0.9675
Caco-2 permeable+0.666
P-glycoprotein substrateSubstrate0.7739
P-glycoprotein inhibitor INon-inhibitor0.9452
P-glycoprotein inhibitor IINon-inhibitor0.9654
Renal organic cation transporterNon-inhibitor0.7526
CYP450 2C9 substrateNon-substrate0.8624
CYP450 2D6 substrateSubstrate0.8919
CYP450 3A4 substrateNon-substrate0.6306
CYP450 1A2 substrateNon-inhibitor0.9046
CYP450 2C9 inhibitorNon-inhibitor0.9384
CYP450 2D6 inhibitorNon-inhibitor0.9231
CYP450 2C19 inhibitorNon-inhibitor0.9606
CYP450 3A4 inhibitorNon-inhibitor0.9238
CYP450 inhibitory promiscuityLow CYP Inhibitory Promiscuity0.8833
Ames testNon AMES toxic0.7822
CarcinogenicityNon-carcinogens0.5352
BiodegradationNot ready biodegradable0.9855
Rat acute toxicity2.1133 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Weak inhibitor0.9454
hERG inhibition (predictor II)Non-inhibitor0.648
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted GC-MS Spectrum - GC-MSPredicted GC-MSsplash10-00dr-9700000000-95dbcabafddc689c7c51
LC-MS/MS Spectrum - LC-ESI-qTof , PositiveLC-MS/MSsplash10-03dr-1940000000-b9d8d6702d2ec39984a3
MS/MS Spectrum - , positiveLC-MS/MSsplash10-03dr-1940000000-b9d8d6702d2ec39984a3
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-0900000000-eb6079605a6c100c01df
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-0290000000-974fee7139cd42435236
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-0900000000-42bb210ad64358516481
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-000x-9550000000-d939b311a5e474ef3e09
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-00di-4900000000-0d48292f742ca16ef15c
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-0006-9200000000-8c56c8b6f416f2afa426
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-168.7710142
predicted
DarkChem Lite v0.1.0
[M-H]-155.32811
predicted
DeepCCS 1.0 (2019)
[M+H]+169.1182142
predicted
DarkChem Lite v0.1.0
[M+H]+157.68611
predicted
DeepCCS 1.0 (2019)
[M+Na]+168.9309142
predicted
DarkChem Lite v0.1.0
[M+Na]+163.82333
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Pore-forming (alpha) subunit of voltage-gated inwardly rectifying potassium channel (PubMed:10219239, PubMed:10753933, PubMed:10790218, PubMed:10837251, PubMed:11997281, PubMed:12063277, PubMed:18559421, PubMed:22314138, PubMed:22359612, PubMed:26363003, PubMed:27916661, PubMed:9230439, PubMed:9351446, PubMed:9765245). Channel properties are modulated by cAMP and subunit assembly (PubMed:10837251). Characterized by unusual gating kinetics by producing relatively small outward currents during membrane depolarization and large inward currents during subsequent repolarization which reflect a rapid inactivation during depolarization and quick recovery from inactivation but slow deactivation (closing) during repolarization (PubMed:10219239, PubMed:10753933, PubMed:10790218, PubMed:10837251, PubMed:11997281, PubMed:12063277, PubMed:18559421, PubMed:22314138, PubMed:22359612, PubMed:26363003, PubMed:27916661, PubMed:9230439, PubMed:9351446, PubMed:9765245). Channel properties are modulated by cAMP and subunit assembly (PubMed:10837251). Forms a stable complex with KCNE1 or KCNE2, and that this heteromultimerization regulates inward rectifier potassium channel activity (PubMed:10219239, PubMed:9230439)
Specific Function
delayed rectifier potassium channel activity
Gene Name
KCNH2
Uniprot ID
Q12809
Uniprot Name
Voltage-gated inwardly rectifying potassium channel KCNH2
Molecular Weight
126653.52 Da
References
  1. Chiu PJ, Marcoe KF, Bounds SE, Lin CH, Feng JJ, Lin A, Cheng FC, Crumb WJ, Mitchell R: Validation of a [3H]astemizole binding assay in HEK293 cells expressing HERG K+ channels. J Pharmacol Sci. 2004 Jul;95(3):311-9. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inhibitor
General Function
Pore-forming subunit of Nav1.5, a voltage-gated sodium (Nav) channel that directly mediates the depolarizing phase of action potentials in excitable membranes. Navs, also called VGSCs (voltage-gated sodium channels) or VDSCs (voltage-dependent sodium channels), operate by switching between closed and open conformations depending on the voltage difference across the membrane. In the open conformation they allow Na(+) ions to selectively pass through the pore, along their electrochemical gradient. The influx of Na(+) ions provokes membrane depolarization, initiating the propagation of electrical signals throughout cells and tissues (PubMed:1309946, PubMed:21447824, PubMed:23085483, PubMed:23420830, PubMed:25370050, PubMed:26279430, PubMed:26392562, PubMed:26776555). Nav1.5 is the predominant sodium channel expressed in myocardial cells and it is responsible for the initial upstroke of the action potential in cardiac myocytes, thereby initiating the heartbeat (PubMed:11234013, PubMed:11804990, PubMed:12569159, PubMed:1309946). Required for normal electrical conduction including formation of the infranodal ventricular conduction system and normal action potential configuration, as a result of its interaction with XIRP2 (By similarity)
Specific Function
ankyrin binding
Gene Name
SCN5A
Uniprot ID
Q14524
Uniprot Name
Sodium channel protein type 5 subunit alpha
Molecular Weight
226937.475 Da
References
  1. Weiss R, Barmada MM, Nguyen T, Seibel JS, Cavlovich D, Kornblit CA, Angelilli A, Villanueva F, McNamara DM, London B: Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation. 2002 Feb 12;105(6):707-13. [Article]
  2. Brugada R, Brugada J, Antzelevitch C, Kirsch GE, Potenza D, Towbin JA, Brugada P: Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts. Circulation. 2000 Feb 8;101(5):510-5. [Article]
  3. Chen SM, Kuo CT, Lin KH, Chiang FT: Brugada syndrome without mutation of the cardiac sodium channel gene in a Taiwanese patient. J Formos Med Assoc. 2000 Nov;99(11):860-2. [Article]
  4. Brugada J, Brugada R, Brugada P: [Brugada syndrome]. Arch Mal Coeur Vaiss. 1999 Jul;92(7):847-50. [Article]
  5. Brugada J, Brugada P, Brugada R: The syndrome of right bundle branch block ST segment elevation in V1 to V3 and sudden death--the Brugada syndrome. Europace. 1999 Jul;1(3):156-66. [Article]
  6. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Other
General Function
Methylates CpG residues. Preferentially methylates hemimethylated DNA. Associates with DNA replication sites in S phase maintaining the methylation pattern in the newly synthesized strand, that is essential for epigenetic inheritance. Associates with chromatin during G2 and M phases to maintain DNA methylation independently of replication. It is responsible for maintaining methylation patterns established in development. DNA methylation is coordinated with methylation of histones. Mediates transcriptional repression by direct binding to HDAC2. In association with DNMT3B and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by modulating dimethylation of promoter histone H3 at H3K4 and H3K9. Probably forms a corepressor complex required for activated KRAS-mediated promoter hypermethylation and transcriptional silencing of tumor suppressor genes (TSGs) or other tumor-related genes in colorectal cancer (CRC) cells (PubMed:24623306). Also required to maintain a transcriptionally repressive state of genes in undifferentiated embryonic stem cells (ESCs) (PubMed:24623306). Associates at promoter regions of tumor suppressor genes (TSGs) leading to their gene silencing (PubMed:24623306). Promotes tumor growth (PubMed:24623306)
Specific Function
DNA (cytosine-5-)-methyltransferase activity
Gene Name
DNMT1
Uniprot ID
P26358
Uniprot Name
DNA (cytosine-5)-methyltransferase 1
Molecular Weight
183163.635 Da
References
  1. Oelke K, Lu Q, Richardson D, Wu A, Deng C, Hanash S, Richardson B: Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors. Arthritis Rheum. 2004 Jun;50(6):1850-60. [Article]
  2. Januchowski R, Jagodzinski PP: Effect of 5-azacytidine and procainamide on CD3-zeta chain expression in Jurkat T cells. Biomed Pharmacother. 2005 Apr;59(3):122-6. [Article]
  3. Lee BH, Yegnasubramanian S, Lin X, Nelson WG: Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005 Dec 9;280(49):40749-56. Epub 2005 Oct 17. [Article]
  4. Scheinbart LS, Johnson MA, Gross LA, Edelstein SR, Richardson BC: Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol. 1991 Apr;18(4):530-4. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. Lessard E, Hamelin BA, Labbe L, O'Hara G, Belanger PM, Turgeon J: Involvement of CYP2D6 activity in the N-oxidation of procainamide in man. Pharmacogenetics. 1999 Dec;9(6):683-96. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters
Specific Function
acetylcholinesterase activity
Gene Name
BCHE
Uniprot ID
P06276
Uniprot Name
Cholinesterase
Molecular Weight
68417.575 Da
References
  1. Bailey DN: Amitriptyline and procainamide inhibition of cocaine and cocaethylene degradation in human serum in vitro. J Anal Toxicol. 1999 Mar-Apr;23(2):99-102. [Article]
  2. Page JD, Wilson IB, Silman I: Butyrylcholinesterase: inhibition by arsenite, fluoride, and other ligands, cooperativity in binding. Mol Pharmacol. 1985 Apr;27(4):437-43. [Article]

Transporters

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:9260930, PubMed:9687576). Functions as a Na(+)-independent, bidirectional uniporter (PubMed:21128598, PubMed:9687576). Cation cellular uptake or release is driven by the electrochemical potential, i.e. membrane potential and concentration gradient (PubMed:15212162, PubMed:9260930, PubMed:9687576). However, may also engage electroneutral cation exchange when saturating concentrations of cation substrates are reached (By similarity). Predominantly expressed at the basolateral membrane of hepatocytes and proximal tubules and involved in the uptake and disposition of cationic compounds by hepatic and renal clearance from the blood flow (PubMed:15783073). Implicated in monoamine neurotransmitters uptake such as histamine, dopamine, adrenaline/epinephrine, noradrenaline/norepinephrine, serotonin and tyramine, thereby supporting a physiological role in the central nervous system by regulating interstitial concentrations of neurotransmitters (PubMed:16581093, PubMed:17460754, PubMed:9687576). Also capable of transporting dopaminergic neuromodulators cyclo(his-pro), salsolinol and N-methyl-salsolinol, thereby involved in the maintenance of dopaminergic cell integrity in the central nervous system (PubMed:17460754). Mediates the bidirectional transport of acetylcholine (ACh) at the apical membrane of ciliated cell in airway epithelium, thereby playing a role in luminal release of ACh from bronchial epithelium (PubMed:15817714). Also transports guanidine and endogenous monoamines such as vitamin B1/thiamine, creatinine and N-1-methylnicotinamide (NMN) (PubMed:12089365, PubMed:15212162, PubMed:17072098, PubMed:24961373, PubMed:9260930). Mediates the uptake and efflux of quaternary ammonium compound choline (PubMed:9260930). Mediates the bidirectional transport of polyamine agmatine and the uptake of polyamines putrescine and spermidine (PubMed:12538837, PubMed:21128598). Able to transport non-amine endogenous compounds such as prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) (PubMed:11907186). Also involved in the uptake of xenobiotic 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP) (PubMed:12395288, PubMed:16394027). May contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable)
Specific Function
acetylcholine transmembrane transporter activity
Gene Name
SLC22A2
Uniprot ID
O15244
Uniprot Name
Solute carrier family 22 member 2
Molecular Weight
62579.99 Da
References
  1. Urakami Y, Akazawa M, Saito H, Okuda M, Inui K: cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J Am Soc Nephrol. 2002 Jul;13(7):1703-10. [Article]
  2. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H: Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997 Jul;16(7):871-81. [Article]
  3. Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, Sawada Y: Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun. 2002 Aug 23;296(3):644-50. [Article]
  4. Arndt P, Volk C, Gorboulev V, Budiman T, Popp C, Ulzheimer-Teuber I, Akhoundova A, Koppatz S, Bamberg E, Nagel G, Koepsell H: Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am J Physiol Renal Physiol. 2001 Sep;281(3):F454-68. [Article]
  5. Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, Sitar DS: The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002 Dec;303(3):959-68. [Article]
  6. Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I: Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005 Apr;33(4):495-9. Epub 2005 Jan 7. [Article]
  7. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:11388889, PubMed:11408531, PubMed:12439218, PubMed:12719534, PubMed:15389554, PubMed:16263091, PubMed:16272756, PubMed:16581093, PubMed:19536068, PubMed:21128598, PubMed:23680637, PubMed:24961373, PubMed:34040533, PubMed:9187257, PubMed:9260930, PubMed:9655880). Functions as a pH- and Na(+)-independent, bidirectional transporter (By similarity). Cation cellular uptake or release is driven by the electrochemical potential (i.e. membrane potential and concentration gradient) and substrate selectivity (By similarity). Hydrophobicity is a major requirement for recognition in polyvalent substrates and inhibitors (By similarity). Primarily expressed at the basolateral membrane of hepatocytes and proximal tubules and involved in the uptake and disposition of cationic compounds by hepatic and renal clearance from the blood flow (By similarity). Most likely functions as an uptake carrier in enterocytes contributing to the intestinal elimination of organic cations from the systemic circulation (PubMed:16263091). Transports endogenous monoamines such as N-1-methylnicotinamide (NMN), guanidine, histamine, neurotransmitters dopamine, serotonin and adrenaline (PubMed:12439218, PubMed:24961373, PubMed:35469921, PubMed:9260930). Also transports natural polyamines such as spermidine, agmatine and putrescine at low affinity, but relatively high turnover (PubMed:21128598). Involved in the hepatic uptake of vitamin B1/thiamine, hence regulating hepatic lipid and energy metabolism (PubMed:24961373). Mediates the bidirectional transport of acetylcholine (ACh) at the apical membrane of ciliated cell in airway epithelium, thereby playing a role in luminal release of ACh from bronchial epithelium (PubMed:15817714). Transports dopaminergic neuromodulators cyclo(his-pro) and salsolinol with lower efficency (PubMed:17460754). Also capable of transporting non-amine endogenous compounds such as prostaglandin E2 (PGE2) and prostaglandin F2-alpha (PGF2-alpha) (PubMed:11907186). May contribute to the transport of cationic compounds in testes across the blood-testis-barrier (Probable). Also involved in the uptake of xenobiotics tributylmethylammonium (TBuMA), quinidine, N-methyl-quinine (NMQ), N-methyl-quinidine (NMQD) N-(4,4-azo-n-pentyl)-quinuclidine (APQ), azidoprocainamide methoiodide (AMP), N-(4,4-azo-n-pentyl)-21-deoxyajmalinium (APDA) and 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP) (PubMed:11408531, PubMed:15389554, PubMed:35469921, PubMed:9260930)
Specific Function
(R)-carnitine transmembrane transporter activity
Gene Name
SLC22A1
Uniprot ID
O15245
Uniprot Name
Solute carrier family 22 member 1
Molecular Weight
61153.345 Da
References
  1. Bednarczyk D, Ekins S, Wikel JH, Wright SH: Influence of molecular structure on substrate binding to the human organic cation transporter, hOCT1. Mol Pharmacol. 2003 Mar;63(3):489-98. [Article]
  2. Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM: Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997 Jun;51(6):913-21. [Article]
  3. Zhang L, Schaner ME, Giacomini KM: Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J Pharmacol Exp Ther. 1998 Jul;286(1):354-61. [Article]
  4. Kakehi M, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Ohtani H, Sawada Y: Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem Biophys Res Commun. 2002 Aug 23;296(3):644-50. [Article]
  5. Green RM, Lo K, Sterritt C, Beier DR: Cloning and functional expression of a mouse liver organic cation transporter. Hepatology. 1999 May;29(5):1556-62. [Article]
  6. Zhang L, Dresser MJ, Chun JK, Babbitt PC, Giacomini KM: Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J Biol Chem. 1997 Jun 27;272(26):16548-54. [Article]
  7. Goralski KB, Lou G, Prowse MT, Gorboulev V, Volk C, Koepsell H, Sitar DS: The cation transporters rOCT1 and rOCT2 interact with bicarbonate but play only a minor role for amantadine uptake into rat renal proximal tubules. J Pharmacol Exp Ther. 2002 Dec;303(3):959-68. [Article]
  8. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K: Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res. 2001 Nov;18(11):1528-34. [Article]
  9. Grundemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H: Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994 Dec 8;372(6506):549-52. [Article]
  10. Ishiguro N, Saito A, Yokoyama K, Morikawa M, Igarashi T, Tamai I: Transport of the dopamine D2 agonist pramipexole by rat organic cation transporters OCT1 and OCT2 in kidney. Drug Metab Dispos. 2005 Apr;33(4):495-9. Epub 2005 Jan 7. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Electrogenic voltage-dependent transporter that mediates the transport of a variety of organic cations such as endogenous bioactive amines, cationic drugs and xenobiotics (PubMed:10196521, PubMed:10966924, PubMed:12538837, PubMed:17460754, PubMed:20858707). Cation cellular uptake or release is driven by the electrochemical potential, i.e. membrane potential and concentration gradient (PubMed:10966924). Functions as a Na(+)- and Cl(-)-independent, bidirectional uniporter (PubMed:12538837). Implicated in monoamine neurotransmitters uptake such as dopamine, adrenaline/epinephrine, noradrenaline/norepinephrine, histamine, serotonin and tyramine, thereby supporting a role in homeostatic regulation of aminergic neurotransmission in the brain (PubMed:10196521, PubMed:16581093, PubMed:20858707). Transports dopaminergic neuromodulators cyclo(his-pro) and salsolinol with low efficiency (PubMed:17460754). May be involved in the uptake and disposition of cationic compounds by renal clearance from the blood flow (PubMed:10966924). May contribute to regulate the transport of cationic compounds in testis across the blood-testis-barrier (Probable). Mediates the transport of polyamine spermidine and putrescine (By similarity). Mediates the bidirectional transport of polyamine agmatine (PubMed:12538837). Also transports guanidine (PubMed:10966924). May also mediate intracellular transport of organic cations, thereby playing a role in amine metabolism and intracellular signaling (By similarity)
Specific Function
monoamine transmembrane transporter activity
Gene Name
SLC22A3
Uniprot ID
O75751
Uniprot Name
Solute carrier family 22 member 3
Molecular Weight
61279.485 Da
References
  1. Wu X, Huang W, Ganapathy ME, Wang H, Kekuda R, Conway SJ, Leibach FH, Ganapathy V: Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am J Physiol Renal Physiol. 2000 Sep;279(3):F449-58. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine (PubMed:10454528, PubMed:10525100, PubMed:10966938, PubMed:17509700, PubMed:20722056, PubMed:33124720). Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Relative uptake activity ratio of carnitine to TEA is 11.3 (PubMed:10454528, PubMed:10525100, PubMed:10966938). In intestinal epithelia, transports the quorum-sensing pentapeptide CSF (competence and sporulation factor) from Bacillus Subtilis wich induces cytoprotective heat shock proteins contributing to intestinal homeostasis (PubMed:18005709). May also contribute to regulate the transport of organic compounds in testis across the blood-testis-barrier (Probable)
Specific Function
(R)-carnitine transmembrane transporter activity
Gene Name
SLC22A5
Uniprot ID
O76082
Uniprot Name
Organic cation/carnitine transporter 2
Molecular Weight
62751.08 Da
References
  1. Wu X, Prasad PD, Leibach FH, Ganapathy V: cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun. 1998 May 29;246(3):589-95. [Article]
  2. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, Shimane M, Tsuji A: Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999 Nov;291(2):778-84. [Article]
  3. Ohashi R, Tamai I, Nezu Ji J, Nikaido H, Hashimoto N, Oku A, Sai Y, Shimane M, Tsuji A: Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001 Feb;59(2):358-66. [Article]
  4. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J, Conway SJ, Ganapathy V: Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999 Sep;290(3):1482-92. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Inhibitor
General Function
Transporter that mediates the transport of endogenous and microbial zwitterions and organic cations (PubMed:10215651, PubMed:15107849, PubMed:15795384, PubMed:16729965, PubMed:20601551, PubMed:22206629, PubMed:22569296, PubMed:29530864). Functions as a Na(+)-dependent and pH-dependent high affinity microbial symporter of potent food-derived antioxidant ergothioeine (PubMed:15795384, PubMed:29530864, PubMed:33124720). Transports one sodium ion with one ergothioeine molecule (By similarity). Involved in the absorption of ergothioneine from the luminal/apical side of the small intestine and renal tubular cells, and into non-parenchymal liver cells, thereby contributing to maintain steady-state ergothioneine level in the body (PubMed:20601551). Also mediates the bidirectional transport of acetycholine, although the exact transport mechanism has not been fully identified yet (PubMed:22206629). Most likely exports anti-inflammatory acetylcholine in non-neuronal tissues, thereby contributing to the non-neuronal cholinergic system (PubMed:22206629, PubMed:22569296). Displays a general physiological role linked to better survival by controlling inflammation and oxidative stress, which may be related to ergothioneine and acetycholine transports (PubMed:15795384, PubMed:22206629). May also function as a low-affinity Na(+)-dependent transporter of L-carnitine through the mitochondrial membrane, thereby maintaining intracellular carnitine homeostasis (PubMed:10215651, PubMed:15107849, PubMed:16729965). May contribute to regulate the transport of cationic compounds in testis across the blood-testis-barrier (PubMed:35307651)
Specific Function
acetylcholine transmembrane transporter activity
Gene Name
SLC22A4
Uniprot ID
Q9H015
Uniprot Name
Solute carrier family 22 member 4
Molecular Weight
62154.48 Da
References
  1. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, Sai Y, Tsuji A: Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999 May;289(2):768-73. [Article]
  2. Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, Ganapathy V: Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):315-27. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Multidrug efflux pump that functions as a H(+)/organic cation antiporter (PubMed:16330770, PubMed:17509534). Plays a physiological role in the excretion of cationic compounds including endogenous metabolites, drugs, toxins through the kidney and liver, into urine and bile respectively (PubMed:16330770, PubMed:17495125, PubMed:17509534, PubMed:17582384, PubMed:18305230, PubMed:19158817, PubMed:21128598, PubMed:24961373). Mediates the efflux of endogenous compounds such as creatinine, vitamin B1/thiamine, agmatine and estrone-3-sulfate (PubMed:16330770, PubMed:17495125, PubMed:17509534, PubMed:17582384, PubMed:18305230, PubMed:19158817, PubMed:21128598, PubMed:24961373). May also contribute to regulate the transport of cationic compounds in testis across the blood-testis-barrier (Probable)
Specific Function
antiporter activity
Gene Name
SLC47A1
Uniprot ID
Q96FL8
Uniprot Name
Multidrug and toxin extrusion protein 1
Molecular Weight
61921.585 Da
References
  1. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K: Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007 Jul 15;74(2):359-71. doi: 10.1016/j.bcp.2007.04.010. Epub 2007 Apr 13. [Article]
  2. Motohashi H, Inui K: Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013 Apr;15(2):581-8. doi: 10.1208/s12248-013-9465-7. Epub 2013 Feb 22. [Article]
  3. Somogyi A, Muirhead M: Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet. 1987 May;12(5):321-66. doi: 10.2165/00003088-198712050-00002. [Article]
  4. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y: Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012 Feb;340(2):393-403. doi: 10.1124/jpet.111.184986. Epub 2011 Nov 9. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
Multidrug efflux pump that functions as a H(+)/organic cation antiporter. Mediates the efflux of cationic compounds, such as the model cations, tetraethylammonium (TEA) and 1-methyl-4-phenylpyridinium (MPP+), the platinum-based drug oxaliplatin or weak bases that are positively charged at physiological pH, cimetidine, the platinum-based drugs cisplatin and oxaliplatin or the antidiabetic drug metformin. Mediates the efflux of endogenous compounds such as, creatinine, thiamine and estrone-3-sulfate. Plays a physiological role in the excretion of drugs, toxins and endogenous metabolites through the kidney
Specific Function
antiporter activity
Gene Name
SLC47A2
Uniprot ID
Q86VL8
Uniprot Name
Multidrug and toxin extrusion protein 2
Molecular Weight
65083.915 Da
References
  1. Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, Inui K: Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem Pharmacol. 2007 Jul 15;74(2):359-71. doi: 10.1016/j.bcp.2007.04.010. Epub 2007 Apr 13. [Article]
  2. Motohashi H, Inui K: Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J. 2013 Apr;15(2):581-8. doi: 10.1208/s12248-013-9465-7. Epub 2013 Feb 22. [Article]
  3. Somogyi A, Muirhead M: Pharmacokinetic interactions of cimetidine 1987. Clin Pharmacokinet. 1987 May;12(5):321-66. doi: 10.2165/00003088-198712050-00002. [Article]
  4. Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y: Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug-drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012 Feb;340(2):393-403. doi: 10.1124/jpet.111.184986. Epub 2011 Nov 9. [Article]

Drug created at June 13, 2005 13:24 / Updated at October 17, 2024 13:59