8000 EXA Use stem plot for ElasticNet and Lasso coefficients (#13435) · xhluca/scikit-learn@fa10650 · GitHub
[go: up one dir, main page]

Skip to content

Commit fa10650

Browse files
mathurinmXing
authored andcommitted
EXA Use stem plot for ElasticNet and Lasso coefficients (scikit-learn#13435)
1 parent 77c4a47 commit fa10650

File tree

1 file changed

+17
-12
lines changed

1 file changed

+17
-12
lines changed

examples/linear_model/plot_lasso_and_elasticnet.py

Lines changed: 17 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -19,15 +19,16 @@
1919
# Generate some sparse data to play with
2020
np.random.seed(42)
2121

22-
n_samples, n_features = 50, 200
22+
n_samples, n_features = 50, 100
2323
X = np.random.randn(n_samples, n_features)
24-
coef = 3 * np.random.randn(n_features)
25-
inds = np.arange(n_features)
26-
np.random.shuffle(inds)
27-
coef[inds[10:]] = 0 # sparsify coef
24+
25+
# Decreasing coef w. alternated signs for visualization
26+
idx = np.arange(n_features)
27+
coef = (-1) ** idx * np.exp(-idx / 10)
28+
coef[10:] = 0 # sparsify coef
2829
y = np.dot(X, coef)
2930

30-
# add noise
31+
# Add noise
3132
y += 0.01 * np.random.normal(size=n_samples)
3233

3334
# Split data in train set and test set
@@ -58,12 +59,16 @@
5859
print(enet)
5960
print("r^2 on test data : %f" % r2_score_enet)
6061

61-
plt.plot(enet.coef_, color='lightgreen', linewidth=2,
62-
label='Elastic net coefficients')
63-
plt.plot(lasso.coef_, color='gold', linewidth=2,
64-
label='Lasso coefficients')
65-
plt.plot(coef, '--', color='navy', label='original coefficients')
62+
m, s, _ = plt.stem(np.where(enet.coef_)[0], enet.coef_[enet.coef_ != 0],
63+
markerfmt='x', label='Elastic net coefficients')
64+
plt.setp([m, s], color="#2ca02c")
65+
m, s, _ = plt.stem(np.where(lasso.coef_)[0], lasso.coef_[lasso.coef_ != 0],
66+
markerfmt='x', label='Lasso coefficients')
67+
plt.setp([m, s], color='#ff7f0e')
68+
plt.stem(np.where(coef)[0], coef[coef != 0], label='true coefficients',
69+
markerfmt='bx')
70+
6671
plt.legend(loc='best')
67-
plt.title("Lasso R^2: %f, Elastic Net R^2: %f"
72+
plt.title("Lasso $R^2$: %.3f, Elastic Net $R^2$: %.3f"
6873
% (r2_score_lasso, r2_score_enet))
6974
plt.show()

0 commit comments

Comments
 (0)
0